Longitudinal roll patterns of Marangoni instability in an easily volatile sessile droplet evaporating at constant contact angle mode

2019 ◽  
Vol 134 ◽  
pp. 1283-1291 ◽  
Author(s):  
Ji-Long Zhu ◽  
Wan-Yuan Shi
Author(s):  
Iltai Isaac Kim ◽  
Yang Li ◽  
Jaesung Park

Abstract We introduce an optical diagnostics to determine the morphological features of liquid droplet such as the thickness, the contact angle, and the dual profile using internal reflection interferometry. A coherent laser beam is internally reflected on the air/liquid interface of a sessile droplet placed on a prism-based substrate to produce an interference fringe on a screen far from the substrate. The reflected laser rays consist of the reflection from the center spherical droplet profile and the one from the lower hyperbola-like droplet profile. The reflected rays are interfered each other to form the interference fringes. Ray tracing simulation is conducted using a custom-designed computer program. The simulation shows that the interfering rays reflected near the inflection point produce the outer-most fringes of the concentric interference pattern on the screen, and the reflected rays from the apex of the spherical profile and the contact line of the lower hyperbola-like profile construct the fringes at the center of the interference patterns. The simulated results are compared with the experimental observation to show a good agreement in the number and the location of the fringes and the radius of the outer-most-fringe where the number of the fringes is dependent on the droplet thickness and the radius of the fringe depends on the contact angle of the droplet. This result provides a new measurement technique to determine the morphological features of very small microdroplet such as the thickness (< a few micron thickness), the contact angle (< a few degree), and the dual-surface profile.


Author(s):  
Mercy Dicuangco ◽  
Susmita Dash ◽  
Justin A. Weibel ◽  
Suresh V. Garimella

The ability to control the size, shape, and location of particulate deposits is important in patterning, nanowire growth, sorting biological samples, and many other industrial and scientific applications. It is therefore of interest to understand the fundamentals of particle deposition via droplet evaporation. In the present study, we experimentally probe the assembly of particles on superhydrophobic surfaces by the evaporation of sessile water droplets containing suspended latex particles. Superhydrophobic surfaces are known to result in a significant decrease in the solid-liquid contact area of a droplet placed on such a substrate, thereby increasing the droplet contact angle and reducing the contact angle hysteresis. We conduct experiments on superhydrophobic surfaces of different geometric parameters that are maintained at different surface temperatures. The transient droplet shape and wetting behavior during evaporation are analyzed as a function of substrate temperature as well as surface morphology. During the evaporation process, the droplet exhibits a constant contact radius mode, a constant contact angle mode, or a mixed mode in which the contact angle and contact radius change simultaneously. The evaporation time of a droplet can be significantly reduced with substrate heating as compared to room-temperature evaporation. To describe the spatial distribution of the particle residues left on the surfaces, qualitative and quantitative evaluations of the deposits are presented. The results show that droplet evaporation on superhydrophobic surfaces, driven by mass diffusion under isothermal conditions or by substrate heating, suppresses particle deposition at the contact line. This preempts the so-called coffee-ring and allows active control of the location of particle deposition.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Brandon Murray ◽  
Shankar Narayanan

AbstractIn this work, the interaction between a sessile droplet’s contact angle and a quartz crystal microbalance (QCM) is elucidated. We differentiate the QCM’s frequency response to changes in the droplet contact area from variations in the dynamic contact angle. This is done by developing a computational model that couples the electrical and mechanical analysis of the quartz substrate with the visco-acoustic behavior of the sessile droplet. From our analysis, we conclude that changes in the contact angle have an effect on the frequency response of the QCM when the droplet height is on the order of the viscous decay length or smaller. On the other hand, changes in the interfacial contact area of the sessile droplets have a significant impact on the frequency response of the QCM regardless of the droplet size.


Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4558 ◽  
Author(s):  
Nur Çobanoğlu ◽  
Ziya Haktan Karadeniz ◽  
Patrice Estellé ◽  
Raul Martínez-Cuenca ◽  
Matthias H. Buschmann

Wettability is the ability of the liquid to contact with the solid surface at the surrounding fluid and its degree is defined by contact angle (CA), which is calculated with balance between adhesive and cohesive forces on droplet surface. Thermophysical properties of the droplet, the forces acting on the droplet, atmosphere surrounding the droplet and the substrate surface are the main parameters affecting on CA. With nanofluids (NF), nanoparticle concentration and size and shape can modify the contact angle and thus wettability. This study investigates the validity of single-phase CA correlations for several nanofluids with different types of nanoparticles dispersed in water. Geometrical parameters of sessile droplet (height of the droplet, wetting radius and radius of curvature at the apex) are used in the tested correlations, which are based on force balance acting on the droplet surface, energy balance, spherical dome approach and empirical expression, respectively. It is shown that single-phase models can be expressed in terms of Bond number, the non-dimensional droplet volume and two geometrical similarity simplexes. It is demonstrated that they can be used successfully to predict CA of dilute nanofluids’ at ambient conditions. Besides evaluation of CA, droplet shape is also well predicted for all nanofluid samples with ±5% error.


2016 ◽  
Vol 89 (1) ◽  
pp. 736-744 ◽  
Author(s):  
Ghulam Destgeer ◽  
Jin Ho Jung ◽  
Jinsoo Park ◽  
Husnain Ahmed ◽  
Hyung Jin Sung

Author(s):  
Svyatoslav S. Chugunov ◽  
Douglas L. Schulz ◽  
Iskander S. Akhatov

It is recognized that small liquid droplet placed on the solid substrate forms equilibrium contact angle that can be obtained from well-known Young’s law. Previously, deviations from Young’s law were demonstrated for the droplets exposed to external fields (gravity, electric, etc) and for the droplets on non-homogeneous substrates. This work reveals that the Young’s equilibrium contact angle can be altered by geometrical reasons only. We consider a ring-shaped droplet on a solid substrate as a test structure for our discussion. We use the global energy consideration for analysis of system equilibrium for the case of freely deposited liquid with no external forces applied. The theoretical analysis shows that steady ring-shaped liquid structure on a solid substrate does exist with contact angles on both contact lines to be different from the Young’s equilibrium contact angle.


Sign in / Sign up

Export Citation Format

Share Document