Ring-Shaped Sessile Droplet

Author(s):  
Svyatoslav S. Chugunov ◽  
Douglas L. Schulz ◽  
Iskander S. Akhatov

It is recognized that small liquid droplet placed on the solid substrate forms equilibrium contact angle that can be obtained from well-known Young’s law. Previously, deviations from Young’s law were demonstrated for the droplets exposed to external fields (gravity, electric, etc) and for the droplets on non-homogeneous substrates. This work reveals that the Young’s equilibrium contact angle can be altered by geometrical reasons only. We consider a ring-shaped droplet on a solid substrate as a test structure for our discussion. We use the global energy consideration for analysis of system equilibrium for the case of freely deposited liquid with no external forces applied. The theoretical analysis shows that steady ring-shaped liquid structure on a solid substrate does exist with contact angles on both contact lines to be different from the Young’s equilibrium contact angle.

Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 2081
Author(s):  
Du Tuan Tran ◽  
Nhat-Khuong Nguyen ◽  
Pradip Singha ◽  
Nam-Trung Nguyen ◽  
Chin Hong Ooi

Modelling the profile of a liquid droplet has been a mainstream technique for researchers to study the physical properties of a liquid. This study proposes a facile modelling approach using an elliptic model to generate the profile of sessile droplets, with MATLAB as the simulation environment. The concept of the elliptic method is simple and easy to use. Only three specific points on the droplet are needed to generate the complete theoretical droplet profile along with its critical parameters such as volume, surface area, height, and contact radius. In addition, we introduced fitting coefficients to accurately determine the contact angle and surface tension of a droplet. Droplet volumes ranging from 1 to 300 µL were chosen for this investigation, with contact angles ranging from 90° to 180°. Our proposed method was also applied to images of actual water droplets with good results. This study demonstrates that the elliptic method is in excellent agreement with the Young–Laplace equation and can be used for rapid and accurate approximation of liquid droplet profiles to determine the surface tension and contact angle.


Author(s):  
Anand N. P. Radhakrishnan ◽  
Marc Pradas ◽  
Serafim Kalliadasis ◽  
Asterios Gavriilidis

Micro-engineered devices (MED) are seeing a significant growth in performing separation processes1. Such devices have been implemented in a range of applications from chemical catalytic reactors to product purification systems like microdistillation. One of the biggest advantages of these devices is the dominance of capillarity and interfacial tension forces. A field where MEDs have been used is in gas-liquid separations. These are encountered, for example, after a chemical reactor, where a gaseous component being produced needs immediate removal from the reactor, because it can affect subsequent reactions. The gaseous phase can be effectively removed using an MED with an array of microcapillaries. Phase-separation can then be brought about in a controlled manner along these capillary structures. For a device made from a hydrophilic material (e.g. Si or glass), the wetted phase (e.g. water) flows through the capillaries, while the non-wetted dispersed phase (e.g. gas) is prevented from entering the capillaries, due to capillary pressure. Separation of liquid-liquid flows can also be achieved via this approach. However, the underlying mechanism of phase separation is far from being fully understood. The pressure at which the gas phase enters the capillaries (gas-to-liquid breakthrough) can be estimated from the Young-Laplace equation, governed by the surface tension (γ) of the wetted phase, capillary width (d) and height (h), and the interface equilibrium contact angle (θeq). Similarly, the liquid-to-gas breakthrough pressure (i.e. the point at which complete liquid separation ceases and liquid exits through the gas outlet) can be estimated from the pressure drop across the capillaries via the Hagen-Poiseuille (HP) equation. Several groups reported deviations from these estimates and therefore, included various parameters to account for the deviations. These parameters usually account for (i) flow of wetted phase through ‘n’ capillaries in parallel, (ii) modification of geometric correction factor of Mortensen et al., 2005 2 and (iii) liquid slug length (LS) and number of capillaries (n) during separation. LS has either been measured upstream of the capillary zone or estimated from a scaling law proposed by Garstecki et al., 2006 3. However, this approach does not address the balance between the superficial inlet velocity and net outflow of liquid through each capillary (qc). Another shortcoming of these models has been the estimation of the apparent contact angle (θapp), which plays a critical role in predicting liquid-to-gas breakthrough. θapp is either assumed to be equal to θeq or measured with various techniques, e.g. through capillary rise or a static droplet on a flat substrate, which is significantly different from actual dynamic contact angles during separation. In other cases, the Cox-Voinov model has been used to calculate θapp from θeq and capillary number. Hence, the empirical models available in the literature do not predict realistic breakthrough pressures with sufficient accuracy. Therefore, a more detailed in situ investigation of the critical liquid slug properties during separation is necessary. Here we report advancements in the fundamental understanding of two-phase separation in a gas-liquid separation (GLS) device through a theoretical model developed based on critical events occurring at the gas-liquid interfaces during separation.


2021 ◽  
Vol 1 (1) ◽  
pp. 10
Author(s):  
Lukman Hakim ◽  
Irsandi Dwi Oka Kurniawan ◽  
Ellya Indahyanti ◽  
Irwansyah Putra Pradana

The underlying principle of surface wettability has obtained great attentions for the development of novel functional surfaces. Molecular dynamics simulations has been widely utilized to obtain molecular-level details of surface wettability that is commonly quantified in term of contact angle of a liquid droplet on the surface. In this work, the sensitivity of contact angle calculation at various degrees of surface hydrophilicity to the adopted potential models of water: SPC/E, TIP4P, and TIP5P, is investigated. The simulation cell consists of a water droplet on a structureless surface whose hydrophilicity is modified by introducing a scaling factor to the water-surface interaction parameter. The simulation shows that the differences in contact angle described by the potential models are systematic and become more visible with the increase of the surface hydrophilicity. An alternative method to compute a contact angle based on the height of center-of-mass of the droplet is also evaluated, and the resulting contact angles are generally larger than those determined from the liquid-gas interfacial line.


Author(s):  
Iltai Isaac Kim ◽  
Yang Li ◽  
Jaesung Park

Abstract We introduce an optical diagnostics to determine the morphological features of liquid droplet such as the thickness, the contact angle, and the dual profile using internal reflection interferometry. A coherent laser beam is internally reflected on the air/liquid interface of a sessile droplet placed on a prism-based substrate to produce an interference fringe on a screen far from the substrate. The reflected laser rays consist of the reflection from the center spherical droplet profile and the one from the lower hyperbola-like droplet profile. The reflected rays are interfered each other to form the interference fringes. Ray tracing simulation is conducted using a custom-designed computer program. The simulation shows that the interfering rays reflected near the inflection point produce the outer-most fringes of the concentric interference pattern on the screen, and the reflected rays from the apex of the spherical profile and the contact line of the lower hyperbola-like profile construct the fringes at the center of the interference patterns. The simulated results are compared with the experimental observation to show a good agreement in the number and the location of the fringes and the radius of the outer-most-fringe where the number of the fringes is dependent on the droplet thickness and the radius of the fringe depends on the contact angle of the droplet. This result provides a new measurement technique to determine the morphological features of very small microdroplet such as the thickness (< a few micron thickness), the contact angle (< a few degree), and the dual-surface profile.


1990 ◽  
Vol 217 ◽  
pp. 263-298 ◽  
Author(s):  
J. A. Stoos ◽  
L. G. Leal

Numerical solutions, obtained via the boundary-integral technique, are used to consider the effect of a linear axisymmetric straining flow on the existence of steady-state configurations in which a neutrally buoyant spherical particle straddles a gas–liquid interface. The problem is directly applicable to predictions of the stability of particle capture in flotation processes, and is also of interest in the context of contact angle and surface tension measurements. A primary goal of the present study is a determination of the critical capillary number, Cac, beyond which an initially captured particle is pulled from the interface by the flow, and the dependence of Cac on the equilibrium contact angle θc. We also present equilibrium configurations for a wide range of contact angles and subcritical capillary numbers.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Youying Ma ◽  
Yuying Wang ◽  
Qingtao Zhang

Because of the unsatisfactory dust suppression efficiency, coal dust still threatens production safety and personnel health. In order to understand the influence of the chemical microstructures of the surfactant on the wetting ability and to facilitate the rapid selecting of surfactants with good wetting performances for specific coal dust, fatty acid methyl ester ethoxylate (FMEE), dodecyl dimethyl betaine (BS-12), sodium fatty acid polyoxyethylene ether carboxylate (AEC), and dodecyl dimethyl benzyl ammonium chloride (DDBAC) were selected in this paper to study the wetting ability of these four surfactants on the bituminous coal dust in Tongchuan, Shaanxi province of China. First, the main functional groups and carbon composition of the coal dust and surfactants were determined by Fourier transform infrared spectroscopy and carbon-13 nuclear magnetic resonance spectroscopy experiments. Second, the drop shape analysis system DSA100 was used to measure the equilibrium contact angle of the surfactant solution with a concentration of 0.06% on bituminous coal dust. The relationship between the chemical microstructures of surfactants and contact angles was analyzed, and the main influencing factors were obtained. The results showed that the contact angle of DDBAC on coal sample dust was the smallest. In addition, the contents of hydroxyl, aromatic ring carbon, unprotonated carbon, and bridged aromatic carbon in surfactants had significant linear correlations with wettability, and the increase of their contents would lead to the decrease of contact angle. According to the results of correlation analysis and curve fitting, the evaluation model of influencing factors on the wettability to bituminous coal dust was established.


2007 ◽  
Vol 572 ◽  
pp. 367-387 ◽  
Author(s):  
V. V. KHATAVKAR ◽  
P. D. ANDERSON ◽  
H. E. H. MEIJER

The spreading of a liquid droplet on a smooth solid surface in the partially wetting regime is studied using a diffuse-interface model based on the Cahn--Hilliard theory. The model is extended to include non-90$^{\circ}$ contact angles. The diffuse-interface model considers the ambient fluid displaced by the droplet while spreading as a liquid. The governing equations of the model for the axisymmetric case are solved numerically using a finite-spectral-element method. The viscosity of the ambient fluid is found to affect the time scale of spreading, but the general spreading behaviour remains unchanged. The wettability expressed in terms of the equilibrium contact angle is seen to influence the spreading kinetics from the early stages of spreading. The results show agreement with the experimental data reported in the literature.


1991 ◽  
Vol 54 (3) ◽  
pp. 232-235 ◽  
Author(s):  
JOSEPH MCGUIRE ◽  
JIANGUO YANG

The effect of drop volume on the equilibrium contact angle, used in evaluation of food contact surface properties, was measured for liquids exhibiting both polar and nonpolar character on six different materials. Drop volumes used ranged from 2 to 40 μl. Contact angles were observed to increase with increasing drop volume in a range below some limiting value, identified as the critical drop volume (CDV). The CDV varied among materials and is explained with reference to surface energetic heterogeneities exhibited by each type of solid surface.


2004 ◽  
Vol 11 (01) ◽  
pp. 7-13 ◽  
Author(s):  
XINPING ZHANG ◽  
SIRONG YU ◽  
ZHENMING HE ◽  
YAOXIN MIAO

This paper focuses on effects of roughness on wettability. According to Wenzel's equation, the transition of theoretical wetting contact angles is 90°, whereas many experimental results have indicated that such a transition takes place at contact angles smaller than 90°. A new model of wetting on roughness surface is established in this paper. The model indicates that the influencing factors of wetting on roughness surface include not only equilibrium contact angle θ0 and surface roughness, but also the system of liquids and solid substrates. There is a corresponding transition angle for every surface roughness, and the transition angle is lower than 90°. Surface roughness is propitious to improve the contact angle only when θ0 is lower than the transition angle. The effect of surface roughness on the contact angle increases with the increase of rE. To engineer the surface with different roughnesses, a Ti test sample is polished with sandpaper with abrasive number 350, 500, 1000 and 2000; the contact angles of water on Ti are measured by the sessile drop method. The results of the theoretical analysis agree with experimental ones.


Coatings ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 791
Author(s):  
Torbus ◽  
Dolata ◽  
Jakiela ◽  
Michalski

On the basis of the principles of non-equilibrium thermodynamics, the following condition was determined: necessary and sufficient for the occurrence of a minimum free energy of a liquid droplet deposited on a solid substrate in a gaseous environment in an isothermal and isochoric system. Only for positive values of the energy of three-phase tension line (shrinking the wetting circumference) for small and large contact angles can the system not reach this minimum. Without exceeding a certain free energy limit, it is not possible for the drop to spontaneously spread over the surface. For zero and negative energy of three-phase tension line (stretching the wetting circumference), the system can always reach a minimum of free energy. The developed equations allow determining the change of free energy occurring between any two stationary states when the droplet volume and physicochemical parameters characterizing energies at the interfaces are known. For a known set of such parameters, the equations allow determining the trajectory of free energy changes in the system as a function of the contact angle from the moment the drop comes into contact with the substrate. The application of the principles of non-equilibrium thermodynamics makes it possible to treat a real system as one in which the drops do not evaporate. However, the system has to be isothermal.


Sign in / Sign up

Export Citation Format

Share Document