Thermal conductivity enhancement and synergistic heat transfer of z-pin reinforced graphite sheet and carbon fiber hybrid composite

Author(s):  
Min Li ◽  
Zenong Fang ◽  
Shaokai Wang ◽  
Yizhuo Gu ◽  
Wei Zhang
Fluids ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 116
Author(s):  
Xavier Paredes ◽  
Maria José Lourenço ◽  
Carlos Nieto de Castro ◽  
William Wakeham

Ionic liquids have been suggested as new engineering fluids, specifically in the area of heat transfer, and as alternatives to current biphenyl and diphenyl oxide, alkylated aromatics and dimethyl polysiloxane oils, which degrade above 200 °C, posing some environmental problems. Addition of nanoparticles to produce stable dispersions/gels of ionic liquids has proved to increase the thermal conductivity of the base ionic liquid, potentially contributing to better efficiency of heat transfer fluids. It is the purpose of this paper to analyze the prediction and estimation of the thermal conductivity of ionic liquids and IoNanofluids as a function of temperature, using the molecular theory of Bridgman and estimation methods previously developed for the base fluid. In addition, we consider methods that emphasize the importance of the interfacial area IL-NM in modelling the thermal conductivity enhancement. Results obtained show that it is not currently possible to predict or estimate the thermal conductivity of ionic liquids with an uncertainty commensurate with the best experimental values. The models of Maxwell and Hamilton are not capable of estimating the thermal conductivity enhancement of IoNanofluids, and it is clear that the Murshed, Leong and Yang model is not practical, if no additional information, either using imaging techniques at nanoscale or molecular dynamics simulations, is available.


2017 ◽  
Vol 25 (9) ◽  
pp. 2405-2412
Author(s):  
刘 光 LIU Guang ◽  
郭 亮 GUO Liang ◽  
胡日查 HU Ri-cha ◽  
吴清文 WU Qing-wen

2014 ◽  
Vol 660 ◽  
pp. 730-734 ◽  
Author(s):  
Khamisah Abdul Hamid ◽  
Wan Hamzah Azmi ◽  
Rizalman Mamat ◽  
Nur Ashikin Usri

Nanofluids are the new coolant fluid that has been widely investigates due to its ability to improved heat transfer better than conventional heat transfer fluid. The need to study the nanofluid properties has been increased to provide better understanding on nanofluid thermal properties and behavior. This study presents the measurement analysis on thermal conductivity enhancement of Al2O3 nanoparticles dispersed in ethylene glycol. The nanofluids are prepared using two step method for volume concentration range from 1.0 % to 4.0 %. The thermal conductivity measurement of the nanofluid is performed by KD2 Pro Thermal Properties Analyzer at working temperature range from 30 °C to 80 °C. The maximum enhancement in thermal conductivity is 21.1 % at volume concentration of 2.0 % and temperature of 70 °C. The results show that the thermal conductivity increases with the increase of nanofluid concentration and temperature. Also, the nanofluid shows enhancement in thermal conductivity compare to the base fluid.


Author(s):  
Mohit Gupta ◽  
Devraj Singh ◽  
Shakti Pratap Singh ◽  
Ashish Mathur ◽  
Shikha Wadhwa ◽  
...  

In present investigation, TiO2 nanostructures were synthesized via simple sol-gel technique and characterized with XRD, SEM-EDX, HRTEM and UV-visible spectroscopy techniques. The temperature and concentration dependence of thermal conductivity enhancement and ultrasonic velocity have been explored in ethylene glycol (EG)-based TiO2 nanofluids. The obtained results showed 24% enhancement in thermal conductivity at higher temperature (80°C) of base fluid ethylene glycol by adding 1.0 wt.% of TiO2 nanoparticles. The behaviour of thermal conductivity enhancement and ultrasonic velocity with temperature in prepared nanofluids has been explained with help of existing phenomena. The increase the ultrasonic velocity in ethylene glycol with TiO2 nanoparticles shows that strong cohesive interaction force rises among the nanoparticles and base fluid. These results divulge that TiO2 nanoparticles can be considered for the applications of next-generation competent heat transfer in nanofluids.


Author(s):  
Huaqing Xie ◽  
Wei Yu ◽  
Yang Li ◽  
Lifei Chen

Nanofluids have attracted increasing interest for more than a decade. A number of studies have demonstrated that nanofluids presented intriguing heat transfer enhancement performances. We produced a series of nanofluids and measured their thermal conductivities. The most used heat transfer fluids including deionized water (DW), ethylene glycol (EG), glycerol, silicone oil, and the binary mixture of DW and EG were used as the base fluids. Various nanoparticles (NPs) including Al2O3 NPs with different sizes, SiC NPs with different shapes, MgO NPs, ZnO NPs, SiO2 NPs, Fe3O4 NPs, TiO2 NPs, diamond NPs (DNPs), and carbon nanotubes (CNTs) with different pretreatments have been used as additives. In the present paper, we summarized our experimental results to elucidate the influencing factors for thermal conductivity enhancement of nanofluids. The thermal transport mechanisms in nanofluids were further discussed and the promising approaches for optimizing the thermal conductivity of nanofluids were proposed.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Yuan-Xian Zeng ◽  
Xiu-Wen Zhong ◽  
Zhao-Qing Liu ◽  
Shuang Chen ◽  
Nan Li

The lipophilic MoS2nanoparticles are synthesized by surface modification with stearic acid (SA). The heat transfer oil-based nanofluids, with the mass fraction of lipophilic nanoparticles varying from 0.25% up to 1.0%, are prepared and their thermal conductivity is determined at temperatures ranging from 40 to 200°C using an apparatus based on the laser flash method. It has been found that the nanofluids have higher thermal conductivity and the thermal conductivity enhancement increased not only with increasing mass fraction of nanoparticles, but also with increasing temperature in the range 40–180°C The results show a 38.7% enhancement of the thermal conductivity of MoS2nanofluid with only 1.0% mass fraction at 180°C.


Author(s):  
Md. Rakibul Hasan Roni ◽  
AKM M. Morshed ◽  
Amitav Tikadar ◽  
Titan C. Paul ◽  
Jamil A. Khan

Abstract Nanofluids have become the subject of theoretical and experimental researches over the few decades due to their enhanced heat transfer performance. In this study, thermal conductivity of copper argon nanofluids is determined through MD simulation. Different types of nanoparticles based on shape was used to make nanofluids. Role of different shape of nanoparticles such as cylindrical, cubical and spherical was disused. Green Kubo method is employed to determine the thermal conductivity of the nanofluids. Result shows that, for volume fraction 3% and 86 K system temperature, thermal conductivity enhancement of nanofluid containing spherical, cubical and cylindrical shape is 15%, 40% and 50% respectively compared with that of base fluid. Thermal conductivity enhancement of nanofluid for spherical particle at 86 K, 94 K and 102 K is 15%, 30% and 40% respectively while for volume fraction 3%, 6% and 9%, the enhancement is 15%, 35% and 45% respectively. The mechanism of increased heat transfer performance for different shape of the nanoparticles is discussed in this paper.


2017 ◽  
Vol 261 ◽  
pp. 121-126 ◽  
Author(s):  
Alina Adriana Minea ◽  
Madalina Georgiana Moldoveanu ◽  
Oana Dodun

Ionanofluids are a very new class of nanofluids having ionic liquids as the base fluid. Thermophysical properties of base ionic liquids (ILs) and nanoparticle enhanced ionic liquids (NEILs) are part of studying a new class of fluids for heat transfer. NEILs are formed by dispersing different volume fractions of nanoparticles in a base ionic liquid. In this article, only the thermal conductivity enhancement was considered for comparison of the different ionanofluids. NEILs show enhanced thermal conductivity compared to the base ILs. Maximum thermal conductivity enhancement was observed by adding 1 % MWCNT to [C4mim][(CF3SO2)2N] ionic liquid. However, if 0.05% MWCNT are added to [(C6)3PC14)][NTf2] no enhancement in thermal conductivity was noticed.


Sign in / Sign up

Export Citation Format

Share Document