scholarly journals Application of response surface methodology to assess the combined effect of operating variables on high-pressure coal gasification for H2-rich gas production

2010 ◽  
Vol 35 (3) ◽  
pp. 1191-1204 ◽  
Author(s):  
J. Fermoso ◽  
M.V. Gil ◽  
B. Arias ◽  
M.G. Plaza ◽  
C. Pevida ◽  
...  
Processes ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 117
Author(s):  
Muhammad Ali Inam ◽  
Rizwan Khan ◽  
Ick Tae Yeom ◽  
Abdul Salam Buller ◽  
Muhammad Akram ◽  
...  

Coprecipitation-adsorption plays a significant role during coagulation-flocculation-sedimentation (C/F/S) of antimony (Sb) in water. This work uses a Box–Behnken statistical experiment design (BBD) and response surface methodology (RSM) to investigate the effects of major operating variables such as initial Sb(III, V) concentration (100–1000 µg/L), ferric chloride (FC) dose (5–50 mg/L), and pH (4–10) on redox Sb species. Experimental data of Sb(III, V) removal were used to determine response function coefficients. The model response value (Sb removal) showed good agreement with the experimental results. FC showed promising coagulation behavior of both Sb species under optimum pH (6.5–7.5) due to its high affinity towards Sb species and low residual Fe concentration. However, a high dose of 50 mg/L of FC is required for the maximum (88–93%) removal of Sb(V), but also for the highest (92–98%) removal of low initial concentrations of Sb(III). Furthermore, BBD and RSM were found to be reliable and feasible for determining the optimum conditions for Sb removal from environmental water samples by a C/F/S process. This work may contribute to a better understanding and prediction of the C/F/S behavior of Sb(III, V) species in aqueous environments, to reduce potential risks to humans.


Author(s):  
Negar Jafari ◽  
Afshin Ebrahimi ◽  
Karim Ebrahimpour ◽  
Ali Abdolahnejad

Introduction: Microcystin-leucine arginine (MC-LR) is a toxin with harmful effects on the liver, kidney, heart, and gastrointestinal tract. So, effective removal of MC-LR from water resources is of great importance. The aim of this study was to remove microcystin-LR (MC-LR) from aqueous solution by Titanium Dioxide (TiO2). Materials and Methods: In the present study, TiO2, as a semiconductor, was used for photodegradation of MC-LR under ultraviolet light (UV). The Response Surface Methodology was applied to investigate the effects of operating variables such as pH (A), contact time (B), and catalyst dose (B) on the removal of MC-LR. The MC-LR concentration was measured by high-performance liquid chromatography (HPLC). Results: The results showed that single variables such as A, B, and C had significant effects on MC-LR removal (pvalue < 0.05). In other words, increase of the contact time and catalyst dose had a positive effect on enhancing the removal efficiency of MC-LR, but the effect of pH was negative. The analysis of variance showed that BC, A2, and C2 variables had a significant effect on the MC-LR removal (pvalue < 0.05). Finally, the maximum removal efficiency of MC-LR was 95.1%, which occurred at pH = 5, contact time = 30 minutes, and catalyst dose = 1 g/l. Conclusion: According to the findings, TiO2, as a photocatalyst, had an appropriate effect on degradation of the MC-LR.


2015 ◽  
Vol 74 ◽  
pp. 381-387 ◽  
Author(s):  
Yalda Davoudpour ◽  
Sohrab Hossain ◽  
H.P.S. Abdul Khalil ◽  
M.K. Mohamad Haafiz ◽  
Z.A. Mohd Ishak ◽  
...  

Biofuels ◽  
2018 ◽  
Vol 9 (5) ◽  
pp. 625-633 ◽  
Author(s):  
Ibtissem Houcinat ◽  
Nawel Outili ◽  
Abdesslam Hassen Meniai

Marine Drugs ◽  
2019 ◽  
Vol 17 (1) ◽  
pp. 40 ◽  
Author(s):  
María Blanco ◽  
José Antonio Vázquez ◽  
Ricardo I. Pérez-Martín ◽  
Carmen G. Sotelo

The small-spotted catshark is one of the most abundant elasmobranchs in the Northeastern Atlantic Ocean. Although its landings are devoted for human consumption, in general this species has low commercial value with high discard rates, reaching 100% in some European fisheries. The reduction of post-harvest losses (discards and by-products) by promotion of a full use of fishing captures is one of the main goals of EU fishing policies. As marine collagens are increasingly used as alternatives to mammalian collagens for cosmetics, tissue engineering, etc., fish skins represent an excellent and abundant source for obtaining this biomolecule. The aim of this study was to analyze the influence of chemical treatment concentration, temperature and time on the extractability of skin collagen from this species. Two experimental designs, one for each of the main stages of the process, were performed by means of Response Surface Methodology (RSM). The combined effect of NaOH concentration, time and temperature on the amount of collagen recovered in the first stage of the collagen extraction procedure was studied. Then, skins treated under optimal NaOH conditions were subjected to a second experimental design, to study the combined effect of AcOH concentration, time and temperature on the collagen recovery by means of yield, amino acid content and SDS-PAGE characterization. Values of independent variables maximizing collagen recovery were 4 °C, 2 hours and 0.1 M NaOH (pre-treatment) and 25 °C, 34 hours and 1 M AcOH (collagen extraction).


Sign in / Sign up

Export Citation Format

Share Document