Entrained-Flow Gasification of Oil Sand Coke with Coal: Assessment of Operating Variables and Blending Ratio via Response Surface Methodology

2011 ◽  
Vol 26 (1) ◽  
pp. 219-232 ◽  
Author(s):  
Farshid Vejahati ◽  
Hassan Katalambula ◽  
Rajender Gupta

Processes ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 117
Author(s):  
Muhammad Ali Inam ◽  
Rizwan Khan ◽  
Ick Tae Yeom ◽  
Abdul Salam Buller ◽  
Muhammad Akram ◽  
...  

Coprecipitation-adsorption plays a significant role during coagulation-flocculation-sedimentation (C/F/S) of antimony (Sb) in water. This work uses a Box–Behnken statistical experiment design (BBD) and response surface methodology (RSM) to investigate the effects of major operating variables such as initial Sb(III, V) concentration (100–1000 µg/L), ferric chloride (FC) dose (5–50 mg/L), and pH (4–10) on redox Sb species. Experimental data of Sb(III, V) removal were used to determine response function coefficients. The model response value (Sb removal) showed good agreement with the experimental results. FC showed promising coagulation behavior of both Sb species under optimum pH (6.5–7.5) due to its high affinity towards Sb species and low residual Fe concentration. However, a high dose of 50 mg/L of FC is required for the maximum (88–93%) removal of Sb(V), but also for the highest (92–98%) removal of low initial concentrations of Sb(III). Furthermore, BBD and RSM were found to be reliable and feasible for determining the optimum conditions for Sb removal from environmental water samples by a C/F/S process. This work may contribute to a better understanding and prediction of the C/F/S behavior of Sb(III, V) species in aqueous environments, to reduce potential risks to humans.



Author(s):  
Negar Jafari ◽  
Afshin Ebrahimi ◽  
Karim Ebrahimpour ◽  
Ali Abdolahnejad

Introduction: Microcystin-leucine arginine (MC-LR) is a toxin with harmful effects on the liver, kidney, heart, and gastrointestinal tract. So, effective removal of MC-LR from water resources is of great importance. The aim of this study was to remove microcystin-LR (MC-LR) from aqueous solution by Titanium Dioxide (TiO2). Materials and Methods: In the present study, TiO2, as a semiconductor, was used for photodegradation of MC-LR under ultraviolet light (UV). The Response Surface Methodology was applied to investigate the effects of operating variables such as pH (A), contact time (B), and catalyst dose (B) on the removal of MC-LR. The MC-LR concentration was measured by high-performance liquid chromatography (HPLC). Results: The results showed that single variables such as A, B, and C had significant effects on MC-LR removal (pvalue < 0.05). In other words, increase of the contact time and catalyst dose had a positive effect on enhancing the removal efficiency of MC-LR, but the effect of pH was negative. The analysis of variance showed that BC, A2, and C2 variables had a significant effect on the MC-LR removal (pvalue < 0.05). Finally, the maximum removal efficiency of MC-LR was 95.1%, which occurred at pH = 5, contact time = 30 minutes, and catalyst dose = 1 g/l. Conclusion: According to the findings, TiO2, as a photocatalyst, had an appropriate effect on degradation of the MC-LR.





2017 ◽  
Vol 19 (2) ◽  
pp. 67-71 ◽  
Author(s):  
Ha Manh Bui

Abstract The COD removal efficiency from an instant coffee processing wastewater using electrocoagulation was investigated. For this purpose, the response surface methodology was employed, using central composing design to optimize three of the most important operating variables, i.e., electrolysis time, current density and initial pH. The results based upon statistical analysis showed that the quadratic models for COD removal were significant at very low probability value (<0.0001) and high coefficient of determination (R2 = 0.9621) value. The statistical results also indicated that all the three variables and the interaction between initial pH and electrolysis time were significant on COD abatement. The maximum predicted COD removal using the response function reached 93.3% with electrolysis time of 10 min, current density of 108.3 A/m2 and initial pH of 7.0, respectively. The removal efficiency value was agreed well with the experimental value of COD removal (90.4%) under the optimum conditions.



2021 ◽  
Vol 4 (1) ◽  
pp. 25-30
Author(s):  
Farah Amni Daud ◽  
Norhisyam Ismail ◽  
Rozidaini Mohd Ghazi

The release of dyes in form of wastewater causes serious environmental problems such as retards photosynthesis, inhibit growth of aquatic biota by blocking out sunlight and utilizing dissolved oxygen. In this study, activated carbon derived from foxtail palm (Wodyetia bifurcata) empty fruit bunch (EFB) was used as an adsorbent to remove methylene blue in aqueous solution. The preparation process of activated carbon consisted of H2SO4 impregnation followed by carbonization at 300ºC for 24 hours. The optimization adsorption process was carried out using Response Surface Methodology (RSM) via Box-Behnken design. Three important operating variables namely dye concentration, contact time and adsorbent dosage were studied. The optimum conditions obtained were 100 ppm of methylene blue, 13 h of contact time and 2 g of activated carbon with the highest percentage of methylene blue removal of 99.9%. Based on the study, activated carbon derived from foxtail palm EFB showed good potential as an adsorbing agent.





2021 ◽  
Vol 29 (2) ◽  
Author(s):  
Mohamad Hafizi Zakria ◽  
Mohd Ghazali Mohd Nawawi ◽  
Mohd Rizal Abdul Rahman

Statistical software is a robust application that has proven reliable worldwide. However, it is not normally used in the actual large scale olefin plant as it relies on the simulation software by Olefin Licensor should any issue rises. The study was conducted in a newly commissioned large scale olefin plant to see the impact of various operating variables on the ethylene yield from Short Residence Time (SRT) VII Furnace. The analysis was conducted utilizing statistical analysis, Response Surface Methodology (RSM) in Minitab Software Version 18 to develop a reliable statistical model with a 95% confidence level. The historical data was taken from the Process Information Management System (PIMS) Software, PI Process Book Version 2015, and underwent both residuals and outliers removal prior to RSM analysis. 10 variables were shortlisted from the initial 15 identified variables in the studied SRT VII via Regression analysis due to RSM limitation to conduct the larger analysis in Minitab Software Version 18. The Response Optimizer tool showed that the ethylene yield from naphtha pyrolysis cracking in the studied plant could be maximized at 34.1% with control setting at 600.39 kg/ hr of Integral Burner Flow, 6.81% of Arch O2, 113.42 Barg of Steam Drum Pressure, 496.96°C of Super High Pressure (SHP) Temperature, 109.11 t/hr of SHP Boiler Feed Water (BFW) Flow, 92.78 t/hr of SHP Flow, 63.50 t/hr of Naphtha Feed Flow, and -13.38 mmHg of Draft Pressure.



Sign in / Sign up

Export Citation Format

Share Document