Effects of grain size and dislocation density on the susceptibility to high-pressure hydrogen environment embrittlement of high-strength low-alloy steels

2012 ◽  
Vol 37 (3) ◽  
pp. 2669-2675 ◽  
Author(s):  
Koichi Takasawa ◽  
Ryo Ikeda ◽  
Noboru Ishikawa ◽  
Ryoji Ishigaki
Author(s):  
Akihide Nagao ◽  
Nobuyuki Ishikawa ◽  
Toshio Takano

Cr-Mo and Ni-Cr-Mo high-strength low-alloy steels are candidate materials for the storage of high-pressure hydrogen gas. Forging materials of these steels have been used for such an environment, while there has been a strong demand for a higher performance material with high resistance to hydrogen embrittlement at lower cost. Thus, mechanical properties of Cr-Mo and Ni-Cr-Mo steels made of quenched and tempered seamless pipes in high-pressure hydrogen gas up to 105 MPa were examined in this study. The mechanical properties were deteriorated in the presence of hydrogen that appeared in reduction in local elongation, decrease in fracture toughness and accelerated fatigue-crack growth rate, although the presence of hydrogen did not affect yield and ultimate tensile strengths and made little difference to the fatigue endurance limit. It is proposed that pressure vessels for the storage of gaseous hydrogen made of these seamless line pipe steels can be designed.


1965 ◽  
Vol 87 (2) ◽  
pp. 313-318 ◽  
Author(s):  
J. W. Coombs ◽  
R. E. Allen ◽  
F. H. Vitovec

The creep and rupture properties of steels were investigated at 1000 deg F in an environment of argon at 50 psig pressure and hydrogen at 900 psig pressure. An SAE 1020 steel, a 0.5 percent Mo-steel, and a 1 percent Cr-0.5 percent Mo steel were used as test materials. The strength of the steels was lower and the creep rate higher in hydrogen than in argon. The data are discussed in respect to the effect of stress on the rate of hydrogen attack.


Author(s):  
Andrew J. Duncan ◽  
Thad M. Adams ◽  
Poh-Sang Lam

An infrastructure of new and existing pipelines and systems will be required to carry and to deliver hydrogen as an alternative energy source to meet the energy demands of the future. Carbon and low alloy steels of moderate strength are currently used in hydrogen delivery systems as well as in the existing natural gas systems. It is critical to understand the material response of these standard pipeline materials when they are subjected to pressurized hydrogen environments. The methods and results from a testing program to quantify hydrogen effects on mechanical properties of carbon steel pipeline and pipeline weld materials are provided. Fracture toughness testing has been performed for one type of steel pipe material (A106 Grade B) in base metal, welded and heat affected zone conditions. C-shaped specimens were tested at room temperature in air and high pressure (102 ATM) hydrogen. A marked reduction in JQ was documented for both the base metal and HAZ metal tested in hydrogen. The results compliment a previous study on tensile properties of A106 Grade B material in high pressure hydrogen and are envisioned to be part of the basis for construction codes and structural integrity demonstrations of piping and pipelines for hydrogen service.


Author(s):  
Andrew Duncan ◽  
Poh-Sang Lam ◽  
Thad Adams

An infrastructure of new and existing pipelines and systems will be required to carry and to deliver hydrogen as an alternative energy source under the hydrogen economy. Carbon and low alloy steels of moderate strength are currently used in hydrogen delivery systems as well as in the existing natural gas systems. It is critical to understand the material response of these standard pipeline materials when they are subjected to pressurized hydrogen environments. The methods and results from a testing program to quantify hydrogen effects on mechanical properties of carbon steel pipeline and pipeline weld materials are provided. Tensile properties of one type of steel (A106 Grade B) in base metal, welded and heat affected zone conditions were tested at room temperature in air and high pressure (10.34 MPa or 1500 psig) hydrogen. A general reduction in the materials ability to plastically deform was noted in this material when specimens were tested in hydrogen. Furthermore, the primary mode of fracture was changed from ductile rupture in air to cleavage with secondary tearing in hydrogen. The mechanical test results will be applied in future analyses to evaluate service life of the pipelines. The results are also envisioned to be part of the bases for construction codes and structural integrity demonstrations for hydrogen service pipeline and vessels.


Author(s):  
L.J. Chen ◽  
H.C. Cheng ◽  
J.R. Gong ◽  
J.G. Yang

For fuel savings as well as energy and resource requirement, high strength low alloy steels (HSLA) are of particular interest to automobile industry because of the potential weight reduction which can be achieved by using thinner section of these steels to carry the same load and thus to improve the fuel mileage. Dual phase treatment has been utilized to obtain superior strength and ductility combinations compared to the HSLA of identical composition. Recently, cooling rate following heat treatment was found to be important to the tensile properties of the dual phase steels. In this paper, we report the results of the investigation of cooling rate on the microstructures and mechanical properties of several vanadium HSLA steels.The steels with composition (in weight percent) listed below were supplied by China Steel Corporation: 1. low V steel (0.11C, 0.65Si, 1.63Mn, 0.015P, 0.008S, 0.084Aℓ, 0.004V), 2. 0.059V steel (0.13C, 0.62S1, 1.59Mn, 0.012P, 0.008S, 0.065Aℓ, 0.059V), 3. 0.10V steel (0.11C, 0.58Si, 1.58Mn, 0.017P, 0.008S, 0.068Aℓ, 0.10V).


Alloy Digest ◽  
1979 ◽  
Vol 28 (2) ◽  

Abstract UNIFLUX V90 is a continuous flux-cored welding electrode (wire) developed to weld high-strength low-alloy steels, but it may be used to weld other low-alloy steels and carbon steels. It is used to deposit typically 2.40% nickel steel weld metal with good low-temperature impact properties. Welding is protected by a shielding atmosphere of either 75% argon-25% carbon dioxide or 100% carbon dioxide. Uniflux V90 is used widely in shipbuilding and other fabricating industries. It provides around 88,000 psi tensile strength and around 26 food-pounds Charpy V-notch impact at 60 F. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as heat treating, machining, and joining. Filing Code: SA-355. Producer or source: Unicore Inc., United Nuclear Corporation.


Alloy Digest ◽  
1983 ◽  
Vol 32 (8) ◽  

Abstract TRI-MARK TM-115 is a gas-shielded flux-cored welding electrode for continuous high deposition are welding. It is designed specifically for semiautomatic and automatic arc welding of high-strength low-alloy steels and quenched-and-tempered steels. This gas-sheilded tubular wire can be used for single and multiple-pass welding. It has outstanding low-temperature impact properties. Its applications including mining equipment, large vehicles and similar items. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as heat treating, machining, and joining. Filing Code: SA-392. Producer or source: Tri-Mark Inc..


Sign in / Sign up

Export Citation Format

Share Document