Exergy analysis of renewable light olefin production system via biomass gasification and methanol synthesis

2021 ◽  
Vol 46 (5) ◽  
pp. 3669-3683
Author(s):  
Yuping Li ◽  
Ying Li ◽  
Xinghua Zhang ◽  
Chenguang Wang ◽  
Xi Li ◽  
...  
Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 404
Author(s):  
Yuping Li ◽  
Maolin Ye ◽  
Fenghua Tan ◽  
Chenguang Wang ◽  
Jinxing Long

Thermodynamic performance of three conceptual systems for biomass-derived olefin production with electricity cogeneration was studied and compared via exergy analysis at the levels of system, subsystem and operation unit. The base case was composed of the subsystems of gasification, raw fuel gas adjustment, methanol/light olefin synthesis and steam & power generation, etc. The power case and fuel case were designed as the combustion of a fraction of gasification gas to increase power generation and the recycle of a fraction of synthesis tail gas to increase olefin production, respectively. It was found that the subsystems of gasification and steam & power generation contribute ca. 80% of overall exergy destruction for each case, of which gasifier and combustor are the main exergy destruction sources, due to the corresponding chemical exergy degrading of biomass and fuel gas. The low efficiency of 33.1% for the power case could be attributed to the significant irreversibility of the combustor, economizer, and condenser in the combined-cycle subsystem. The effect of the tail gas recycle ratio, moisture content of feedstock, and biomass type was also investigated to enhance system exergy performance, which could be achieved by high recycle ratio, using dry biomass and the feedstock with high carbon content. High system efficiency of 38.9% was obtained when oil palm shell was used, which was 31.7% for rice husk due to its low carbon content.


2009 ◽  
Vol 130 (3-4) ◽  
pp. 630-636 ◽  
Author(s):  
Suk-Hwan Kang ◽  
Jong Wook Bae ◽  
P. S. Sai Prasad ◽  
Seon-Ju Park ◽  
Kwang-Jae Woo ◽  
...  

2019 ◽  
Vol 39 (3) ◽  
pp. 157-177 ◽  
Author(s):  
Ehsan Kianfar

AbstractThe present review focuses on a comparison and assessment of zeolite catalyst performance of dimethyl ether and light olefin production through methanol. Dimethyl ether is a clean fuel which needs diverse processes to be produced. Methanol to dimethyl ether is a very novel process which offers considerable advantages versus additional processes for the production of dimethyl ether. The corresponding fixed-bed reactors compose the most important section of such a process. Production of dimethyl ether by the mentioned process is of high importance since it can be catalytically transferred to a substance with the value of propylene. Furthermore, in case of capability to transfer low-purity methanol into dimethyl ether, less expensive methanol can be consequently achieved with higher value added. In the petrochemical industry, light olefins, for example, ethylene and propylene, can be used as raw materials for the production of polyolefin. The present review aims to produce dimethyl ether in order to reach olefin substances, initially conducting a compressive assessment on production methods of olefin substances.


2019 ◽  
Vol 58 (13) ◽  
pp. 5131-5139 ◽  
Author(s):  
Jincan Huang ◽  
Wei Wang ◽  
Zhaoyang Fei ◽  
Qing Liu ◽  
Xian Chen ◽  
...  

2015 ◽  
Vol 15 (10) ◽  
pp. 8311-8317 ◽  
Author(s):  
Joongwon Lee ◽  
Seungwon Park ◽  
Ung Gi Hong ◽  
Jin Oh Jun ◽  
In Kyu Song

Surface modification of phosphorous-containing porous ZSM-5 catalyst (P/C-ZSM5-Sil.(X)) was carried out by a chemical liquid deposition (CLD) method using tetraethyl orthosilicate (TEOS) as a silylation agent. Different amount of TEOS (X = 5, 10, 20, and 30 wt%) was introduced into P/C-ZSM5il.(X) catalysts for surface modification. The catalysts were used for the production of light olefins (ethylene and propylene) through catalytic cracking of C5 raffinate. It was found that external surface acidity of P/C-ZSM5-Sil.(X) catalysts significantly decreased with increasing TEOS content. In the catalytic reaction, both conversion of C5 raffinate and yield for light olefins showed volcano-shaped curves with respect to TEOS content. Among the catalysts tested, P/C-ZSM5- Sil.(20) catalyst exhibited the best catalytic performance in terms of conversion of C5 raffinate and yield for light olefins. Thus, an optimal TEOS content was required for CLD treatment to maximize light olefin production in the catalytic cracking of C5 raffinate over P/C-ZSM5-Sil.(X) catalysts.


2012 ◽  
Vol 512-515 ◽  
pp. 1418-1421 ◽  
Author(s):  
Qiu Hui Yan ◽  
Bei Bei Wang

Based on the integration of different systems and the comprehensive step utilization of energy, the system of hydrogen production by biomass gasification in supercritical water using concentrated solar energy has been coupled by using the combination of solar and biomass as an energy source. As a model compound of biomass, glucose was gasified in supercritical water at 25MPa and 873K, whether there is pre-heater water in the hydrogen production system was compared by the way of thermodynamic analysis. The results show that energy and exergy efficiency is high in the hydrogen production system with pre-heat water.


Sign in / Sign up

Export Citation Format

Share Document