scholarly journals Exergy Analysis of Alternative Configurations of Biomass-Based Light Olefin Production System with a Combined-Cycle Scheme via Methanol Intermediate

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 404
Author(s):  
Yuping Li ◽  
Maolin Ye ◽  
Fenghua Tan ◽  
Chenguang Wang ◽  
Jinxing Long

Thermodynamic performance of three conceptual systems for biomass-derived olefin production with electricity cogeneration was studied and compared via exergy analysis at the levels of system, subsystem and operation unit. The base case was composed of the subsystems of gasification, raw fuel gas adjustment, methanol/light olefin synthesis and steam & power generation, etc. The power case and fuel case were designed as the combustion of a fraction of gasification gas to increase power generation and the recycle of a fraction of synthesis tail gas to increase olefin production, respectively. It was found that the subsystems of gasification and steam & power generation contribute ca. 80% of overall exergy destruction for each case, of which gasifier and combustor are the main exergy destruction sources, due to the corresponding chemical exergy degrading of biomass and fuel gas. The low efficiency of 33.1% for the power case could be attributed to the significant irreversibility of the combustor, economizer, and condenser in the combined-cycle subsystem. The effect of the tail gas recycle ratio, moisture content of feedstock, and biomass type was also investigated to enhance system exergy performance, which could be achieved by high recycle ratio, using dry biomass and the feedstock with high carbon content. High system efficiency of 38.9% was obtained when oil palm shell was used, which was 31.7% for rice husk due to its low carbon content.

2021 ◽  
Vol 46 (5) ◽  
pp. 3669-3683
Author(s):  
Yuping Li ◽  
Ying Li ◽  
Xinghua Zhang ◽  
Chenguang Wang ◽  
Xi Li ◽  
...  

2000 ◽  
Author(s):  
Zelong Liu ◽  
Hongguang Jin ◽  
Rumou Lin

Abstract Integrated Gasification Combined Cycle (IGCC) is considered as one of the advanced clean coal power technologies. Here, we have investigated an IGCC with air separation unit (ASU) on the basis of exergy analysis, and clarified the distribution of exergy destruction in sub-systems including air separation unit, coal gasifier, coal gas clean-up unit, air compressor, combustor of gas turbine, gas turbine, heat recovery steam generation and steam turbine. Particularly, we have focused on the interaction between the ASU and the gas turbine (GT). The results obtained disclosed the significant role of the integration between air separation unit and air compressor in the GT, and the effect of nitrogen injection to the combustor on IGCC overall performance. The study also points out that larger exergy destruction take place in the processes of gasification, combustion in GT, and air separation, and so does the change of exergy destruction distribution with the air integration degree and the nitrogen injection ratio. We have demonstrated the potential for improving the IGCC system. This investigation will be valuable for the synthesis of next-generation IGCC.


2012 ◽  
Vol 77 (7) ◽  
pp. 945-957
Author(s):  
Bamdad Barari ◽  
Abbasian Shirazi ◽  
Mohsen Keshavarzi ◽  
Iman Rostamsowlat

In this study, time dependent exergy analysis of the Fars Combined Power Plant Cycle has been investigated. Exergy analysis has been used for investigating each part of actual combined cycle by considering irreversibility from Apr 2006 to Oct 2010. Performance analysis has been done for each part by evaluating exergy destruction in each month. By using of exergy analysis, aging of each part has been evaluated respect to time duration. In addition, the rate of lost work for each month has been calculated and variation of this parameter has been considered as a function of aging rate. Finally, effects of exergy destruction of each part have been investigated on exergy destruction of whole cycle. Entire analysis has been done for Unit 3 and 4 of gas turbine cycle which combined by Unit B of steam cycle in Fars Combined Power Plant Cycle located in Fars province in Iran.


Author(s):  
Alcides Codeceira Neto ◽  
Pericles Pilidis

The present paper describes an on-design and an off-design performance study of gas turbine combined cycle based power plants. The exergy analysis has been carried out along with the performance assessment, considering the overall plant exergetic efficiency and the exergy destruction in the various components of the plant. The exergy method highlights irreversibility within the plant components, and it is of particular interest in this investigation. A computational analysis has been carried out to investigate the effects of compressor pressure ratio and gas turbine entry temperature on the thermodynamic performance of combined gas / steam power cycles. The exergy analysis has been performed for on-design point calculations, considering single shaft gas turbines with different compressor pressure ratios and turbine entry temperatures. Nearly 100 MW shaft power gas turbine engines burning natural gas fuel have been selected in this study. The off-design calculations have been performed for one of the gas turbines selected from the on-design point studies. For this particular gas turbine engine, fuel has been changed from natural gas to a low calorific value fuel gas originated from the gasification of wood. The exergy analysis indicates that maximum exergy is destroyed in the combustor, in the case of combined gas / steam cycles burning natural gas. For these studies on-design point, the exergy destruction in the combustor is found to decrease with increasing compressor pressure ratio to an optimum value and with increasing turbine entry temperature. In the off-design case the gas turbine engine is burning low calorific value fuel originated from the gasification of wood. The maximum exergy destruction occurs in the gasification process, followed by the combustion process in the gas turbine.


Author(s):  
A. J. Minchener

Gasification combined cycle has the potential to provide a clean, high efficiency, low environmental impact power generation system. A prime fuel for such systems is coal but there is scope in part to utilise renewable energy sources including biomass and waste materials such as sewage sludge or even oil residues. There is considerable scope to improve the performance of the first generation systems of gasification combined cycle plant, both through design changes and through the continued development towards second generation plant. Such improvements offer the prospect of even better efficiency, coal/biomass/waste utilisation flexibility, lower emissions especially of CO2, and lower economic cost of power generation. There have been several major R&D initiatives, supported in part by the European Commission, which have been designed to meet these aims. The approach adopted has been to form multi-partner project teams comprising industry, industrial research organisations and selected universities. The main technical issues that have been considered include co-gasification, e.g. co-feeding, fuel conversion, gas quality, contaminants, component developments, and the integration of hot fuel gas cleaning systems for removal of solid particles, control of sulphur emissions, control of fuel bound nitrogenous species, removal of halides and control of alkali species. The technical R&D activities have been underpinned by several major techno-economic assessment studies. This paper provides an overview of these various activities which either form part of the European Commission JOULE Coal R&D Programme or were supported under an APAS special initiative.


2021 ◽  
Author(s):  
Putri Sundari

The increasing of electricity needs and the crisis of fossil fuels have been requiring an improvement of power plant performance, including combined cycle power plant which has important role as a provider of national electricity nowadays. Thermoeconomic analysis is one of new concept that combine exergy analysis with cost approachment to improve a system performance. In this research, analysis applied in combine cycle power plant of PT. Indonesia Power Grati. The result shows that combustion chamber is the greatest irreversibility source with an exergy destruction was found 53,81%. Where as an economic analysis obtains a different result, LP steam turbine is the component which has a huge exergoeconomic loss was found Rp 33.655.386,46/hour. Based on this result, the efforts that we can do to get an optimal performance of combine cycle power plant are preheating a combustion air to reach a perfect combustion and cleaning all the components continually.


Author(s):  
Yoshinori Hisazumi ◽  
Seiji Yamashita ◽  
Yasuhiro Fukuyoshi ◽  
Keizo Nakamura

We have been developing a hybrid LNG vaporization and power generation system which generates approximately −100°C air and natural gas fuel of a steady heating value since March 2004. In this study, three types of intake-cooling process for the Gas Turbine Combined Cycle (GTCC) ranging from several MW to several hundred MW are reviewed. • Cold air is directly introduced as gas turbine intake air and cooled down to approximately 10°C. • Cold air is compressed to about 5 bars and injected into the middle stage of the compressor as an inter-cool medium. • Cold air is compressed, recuperated and injected into the combustor as a power augmentation medium. In this paper, we describe an outline of the test equipment, configurations of the hybrid vaporization and power generation system for the gas turbine and discuss the possibilities based on exergy analysis for the above three cases.


Author(s):  
Shimin Deng ◽  
Rory Hynes

In this paper, a new power generation process based on oxyfuel and PFBC-CC is proposed, which has advantages in thermal performance, emissions and footprint. Five cases in total are modeled by using Aspen Plus™ and GateCycle™. The simulation indicates that the efficiency of the new process is 4% higher than existing ambient oxyfuel power generation process. The performance of the base case is compared with two existing oxyfuel cases to identify the potentials of the new process. Thermodynamic benefit of the new process is reasonably explained by introducing a concept of “non-stack combined cycle”. The waste heat recovery from gas turbine exhaust gas is discussed and compared. In addition, impacts on performance of key parameters are investigated.


Author(s):  
R. D. Lessard ◽  
F. L. Robson ◽  
W. A. Blecher ◽  
A. W. Carlson

This paper highlights a recently completed study program to evaluate the performance and cost of advanced power generation systems which utilize coal-derived, medium-Btu fuel gas. Three advanced power generation systems are covered: combined-cycle gas turbine, molten carbonate fuel cell, and open-cycle MHD/steam. Two coal gasification processes for supplying the medium-Btu fuel gas are considered; they are the oxygen-blown Texaco process and British Gas Corporation/Lurgi process or simply BGC process. Descriptions of the advanced power generation systems and of the medium-Btu fuel gas supplied by the gasification processes are provided. The performance of each of the advanced power generation systems is evaluated when utilizing coal-derived, medium-Btu fuel gas supplied 1) via pipeline from each of the two coal gasifiers, and 2) through integration with each of the two coal gasifiers. Estimates of electric power costs are given.


Sign in / Sign up

Export Citation Format

Share Document