High quality factor fractal inductor with complementary split-ring array inclusion

Circuit World ◽  
2020 ◽  
Vol 46 (3) ◽  
pp. 215-219
Author(s):  
Akhendra Kumar Padavala ◽  
Narayana Kiran Akondi ◽  
Bheema Rao Nistala

Purpose This paper aims to present an efficient method to improve quality factor of printed fractal inductors based on electromagnetic band-gap (EBG) surface. Design/methodology/approach Hilbert fractal inductor is designed and simulated using high-frequency structural simulator. To improve the quality factor, an EBG surface underneath the inductor is incorporated without any degradation in inductance value. Findings The proposed inductor and Q factor are measured based on well-known three-dimensional simulator, and the results are compared experimentally. Practical implications The proposed method was able to significantly decrease the noise with increase in the speed of radio frequency and sensor-integrated circuit design. Originality/value Fractal inductor is designed and simulated with and without EBG surfaces. The measurement of printed circuit board prototypes demonstrates that the inclusion of split-ring array as EBG surface increases the quality factor by 90 per cent over standard fractal inductor of the same dimensions with a small degradation in inductance value and is capable of operating up to 2.4 GHz frequency range.

2020 ◽  
Vol 37 (4) ◽  
pp. 199-204
Author(s):  
Kamil Janeczek ◽  
Aneta Araźna ◽  
Wojciech Stęplewski ◽  
Marek Kościelski ◽  
Krzysztof Lipiec ◽  
...  

Purpose The purpose of this study is to design and fabricate a simple passive sensor circuitry embedded into a printed circuit board (PCB) and then to examine its properties. Design/methodology/approach A passive sensor transponder integrated circuit (IC) working in the high frequency (HF) 13.56 MHz frequency band was selected for this study. A loop antenna was designed to make the reported sensor circuitry readable. Next, the sensor circuitry was fabricated and embedded into a PCB with the proposed technologies. Finally, properties of the embedded structures were examined as well-functional parameters of the sensor circuitries. Findings The described investigation results confirmed that the proposed technologies using an epoxy resin or standard materials used for PCB’s production allowed to successfully produce sensors embedded into PCBs. This technology did not have a negative significant impact either on quality of solder joints of the assembled transponder IC or on functional properties of the embedded sensor. Apart from the identification data, the reported sensor can provide information about a selected property of its environment, e.g. temperature when its internal temperature sensitive element is used or other factors with the use of external sensitive elements, such as humidity. Research limitations/implications It is planned to carry on the reported investigations to examine other types of sensor circuitries capable of indicating e.g. humidity level and to evaluate influence of the proposed technology on their functional properties. Practical implications The reported sensor circuitries can be successfully used in electronic industry in internet of things systems not only to identify monitored electronic devices, but also to control selected parameters of external environment. This creates opportunity to detect device malfunction by detecting local temperature growth or to analyze its environment, which might allow to predict failure of controlled products using radio waves. This advantage seems to be extremely beneficial for applications, such as space, aviation or military, in which embedded sensor systems may lead to enhancing reliability of electronic devices by reacting on occurred failures in a more efficient way. Originality/value This study demonstrates valuable information for engineers conducting research on sensor components embedded into PCBs. The reported technologies are quite simple and cost-effective because of the use of standard materials known for PCB’s production or an epoxy resin which could be treated as an additional encapsulant material enhancing mechanical properties of the embedded sensor transponder IC.


Circuit World ◽  
2016 ◽  
Vol 42 (4) ◽  
pp. 197-200 ◽  
Author(s):  
Shao-Fu Wang

Purpose To solve the problem of meminductor in circuit design, this paper aims to describe a synthesis method and the mechanism in terms of constitutive relation of the gyrator for transforming nano memristor into meminductor. Design/methodology/approach The gyrator was designed to achieve memristor-meminductor transformation by using amplifiers and memristor. Findings The simulation results verify the flexibility of its operation. Originality/value This gyrator can be used in integrated circuit design such as filter, diplexer, and it has a simple and economical implementation.


2014 ◽  
Vol 26 (4) ◽  
pp. 180-193 ◽  
Author(s):  
Fei-Jun Chen ◽  
Shi Yan ◽  
Zhen-Guo Yang

Purpose – The purpose of this study is to address two kinds of printed circuit board (PCB) failures with electrolytic Ni/Au as the surface finish. One was the weak bondability of gold wires to Ni/Au pads and the other was “dull gold” and weak solder wettability, which both caused great loss for the PCB manufacturer. Design/methodology/approach – The failure samples were studied and analyzed in terms of macro- and micro-morphology of the surface finish, its element composition and thickness by various characterization techniques, such as three-dimensional stereo microscope, scanning electron microscope, energy dispersive spectroscopy and X-ray fluorescence spectrum. Findings – Then the causes of the two failures were both found to be the inadequate thickness of gold deposit and other surface finish defects, but these causes played different roles in either failure or the mechanisms differ. Finally, their failure mechanisms were discussed and corresponding countermeasures were put forward for prevention. Practical implications – This study not only addresses a practical failure problem but also provides some clues to a better and further understanding of the effect of PCB process and management on its quality and reliability in manufacturing practice. Originality/value – It sheds light on how the thickness and quality of surface finish affects its wire bonding and soldering performances.


2020 ◽  
Author(s):  
Pragnan Chakravorty

In the past few years, a new type of circuit board, named here as active substrate board (ASB), was introduced over circuit applications of diodes. Unlike a traditional printed circuit board (PCB), an ASB has its substrate made of a semiconductor. The inability of the traditional integrated circuit (IC) technology to integrate wavelength dependent radio frequency (RF) components triggered the advent of ASBs. These boards draw desirable features from IC as well as PCB technologies. Unprecedented challenges came up in modeling the different devices fabricated on an ASB owing to their large sizes and the presence of wideband microwaves. So far, modeling the effect of large sizes and ambient microwaves on DC bias of diodes have not been considered in scientific literature. Furthermore, the state of the art numerical simulators are unable to imitate the behavior of such diodes observed over measurements. Here, a semi-analytical, behavioral DC model of three dimensional (3D), distributed diodes on ASB is presented that is fairly accurate in predicting the actual behavior of the diodes. The model also opines a novel phenomenon of an AC affecting a DC with an added resistance.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Krzysztof Górecki ◽  
Przemysław Ptak ◽  
Barbara Dziurdzia

Purpose This paper presents the results of the investigations of LED modules soldered with the use of different soldering pastes. Design/methodology/approach The tested power LED modules are soldered using different solder pastes and soldering processes. Thermal parameters of the performed modules are tested using indirect electrical methods. The results of measurements obtained for different modules are compared and discussed. Findings It was shown that the soldering process visibly influences the results of measurements of optical and thermal parameters of LED modules. For example, values of thermal resistance of these modules and the efficiency of conversion of electrical energy into light differ between each other even by 15%. Practical implications The obtained results of investigations can be usable for designers of the assembly process of power LED modules. Originality/value This paper shows the investigations results in the area of effective assembly of power LEDs to the metal core printed circuit board (MCPCB) using different soldering pastes (REL22, REL61, LMPA-Q6, OM-5100, OM-338-PT, M8, OM-340, CVP-390). It was shown that the best thermal and optical properties of these modules are obtained for the OM5100 paste by Alpha Assembly.


2017 ◽  
Vol 29 (1) ◽  
pp. 23-27 ◽  
Author(s):  
Janusz Sitek ◽  
Marek Koscielski ◽  
Janusz Borecki ◽  
Tomasz Serzysko

Purpose The purpose of this paper is to evaluate the influence of solder powders sizes applied in soldering materials used for Package-on-Package (PoP) system manufacture as well as other factors on reliability and mechanical strength of created solder joints in three-dimensional (3D) PoP structures. Design/methodology/approach The design of experiments based on the Genichi Taguchi method were used in the investigation. The main factors covered different printed circuit board (PCB) coatings, soldering materials with solder powders sizes from Types 3 to 7 and soldering profiles. The reliability of 3D PoP structures was determined by measurements of resistance of daisy-chain solder joints systems during thermal shocks (TS) cycles. The mechanical strength of solder joints in 3D PoP structures was determined by measurements of a shear force of “Top” layer of 3D structures at T0 and after 1,500 TS. The ANOVA was used for results assessment. Findings The size of solder powders applied in soldering materials had small (10 per cent) influence on mechanical strength of solder joints in 3D PoP structures. Small size of solder powder had positive effect on solder joints reliability in 3D PoP structures. Especially important was the selection of solder paste for “Bottom” layer of 3D PoP system (influence 17 per cent). Incorrect soldering profile (influence 46 per cent) or wrong selected PCB coating (influence 35 per cent) can very easily reduce the positive impact of soldering materials on solder joints reliability. It was stated that as low as possible soldering profile and organic solderability preservative (OSP) coating in the case of single-sided PCB are the best for 3D PoP structures due to their reliability. Originality/value This paper explains how different sizes of solder powders used nowadays in solder pastes influence on reliability and mechanical strength of the solder joints in 3D PoP structures. The contribution, in numerical values, of soldering materials, soldering profile and PCB coating on 3D PoP structures solder joints reliability as well as recommendations improving reliability of 3D PoP structures solder joints were presented.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3054
Author(s):  
Konstantin O. Petrosyants ◽  
Nikita I. Ryabov

The problem of thermal modeling of modern three-dimensional (3D) integrated circuit (IC) systems in packages (SiPs) is discussed. An effective quasi-3D (Q3D) approach of thermal design is proposed taking into account the specific character of 3D IC stacked multilayer constructions. The fully-3D heat transfer equation for global multilayer construction is reduced to the set of coupled two-dimensional (2D) equations for separate construction layers. As a result, computational difficulties, processor time, and RAM volume are significantly reduced, while accuracy can be provided. A software tool, Overheat-3D-IC, was developed on the base of the generalized Q3D package numerical model. For the first time, the global 3D thermal performances across the modern integrated circuit/through-silicon via/ball grid array (IC-TSV-BGA) and multi-chip (MC)-embedded printed circuit board (PCB) packages were simulated. A ten times decrease of central processing unit (CPU) time was achieved as compared with the 3D solutions obtained by commercial universal 3D simulators, while saving the sufficient accuracy. The simulation error of maximal temperature TMAX determination for different types of packages was not more than 10–20%.


1991 ◽  
Vol 02 (04) ◽  
pp. 263-285 ◽  
Author(s):  
PHILIP C. CHAN

In this paper we will review the current state of commercial electronic design automation (EDA) tools for the design of multichip modules. MCM can be classified in terms of its substrate technology. The choice of substrate technology has important implications for the selection of design automation tools. A PCB EDA system seems more appropriate for MCMs with stacked via substrate which closely resembles the through-hole printed circuit board (PCB). A chip layout system may be more appropriate for MCMs with low-cost thin-film silicon substrate which typically uses staircase vias. The cofired ceramic substrate MCM which evolved from the hybrid integrated circuit technology may use the specialized hybrid EDA software packages available for the designing of hybrid integrated circuits. Historically, printed circuit board and integrated circuit design automation software evolved separately. There exists a boundary between the printed circuit board and integrated circuit design automation tools in the physical design hierarchy. This boundary can be an important limitation for the repartitioning of the physical design hierarchy within the MCM. We shall discuss in detail the impact of MCM on various aspects of EDA. In the area of physical design, we must face the traditional placement and routing problem for any high speed design. Problems such as system clock skew and tight timing requirements must be considered. As one push clock frequency higher, one also must consider discontinuities due to vias and bends besides the classical transmission line effect due to long wires. Other traditional physical design problems such as ground and power plane generation, physical design verification and mask tooling must be revisited in the context of various MCM substrate technologies. The thermal aspects of MCM design are strongly influenced by the placement of chips on the MCM substrate. Thermal design is especially important for high density MCMs using the flip-chip mounting technology. Here, the heat must be dissipated through the back of the substrate via thermal pillars or bumps. We still need to deal with the traditional coupled transmission line problems. Due to the small cross section, high performance MCM substrate interconnects are resistive and the transmission lines they form are lossy. Noise is another main problem for MCM design. For high speed MCM with many CMOS buffers, the ground bouncing noise resulting from simultaneous switching of a large number of CMOS drivers must be controlled through proper substrate and package design. We will conclude the paper by comparing existing VLSI and PCB EDA tools for MCM design.


Sign in / Sign up

Export Citation Format

Share Document