scholarly journals 3D printing tablets: Predicting printability and drug dissolution from rheological data

2020 ◽  
Vol 590 ◽  
pp. 119868 ◽  
Author(s):  
Moe Elbadawi ◽  
Thomas Gustaffson ◽  
Simon Gaisford ◽  
Abdul W. Basit
Pharmaceutics ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 13
Author(s):  
Benzion Amoyav ◽  
Yoel Goldstein ◽  
Eliana Steinberg ◽  
Ofra Benny

Microfluidics research for various applications, including drug delivery, cell-based assays and biomedical research has grown exponentially. Despite this technology’s enormous potential, drawbacks include the need for multistep fabrication, typically with lithography. We present a one-step fabrication process of a microfluidic chip for drug dissolution assays based on a 3D printing technology. Doxorubicin porous and non-porous microspheres, with a mean diameter of 250µm, were fabricated using a conventional “batch” or microfluidic method, based on an optimized solid-in-oil-in-water protocol. Microspheres fabricated with microfluidics system exhibited higher encapsulation efficiency and drug content as compared with batch formulations. We determined drug release profiles of microspheres in varying pH conditions using two distinct dissolution devices that differed in their mechanical barrier structures. The release profile of the “V” shape barrier was similar to that of the dialysis sac test and differed from the “basket” barrier design. Importantly, a cytotoxicity test confirmed biocompatibility of the printed resin. Finally, the chip exhibited high durability and stability, enabling multiple recycling sessions. We show how the combination of microfluidics and 3D printing can reduce costs and time, providing an efficient platform for particle production while offering a feasible cost-effective alternative to clean-room facility polydimethylsiloxane-based chip microfabrication.


Author(s):  
Michael Greaves ◽  
Mana Mende ◽  
Jiacheng Wang ◽  
Wenji Yang ◽  
Suelen Barg

AbstractAmong 2D materials, MXenes (especially their most studied member, titanium carbide) present a unique opportunity for application via colloidal processing, as they are electrically conductive and chemically active, whilst still being easily dispersed in water. And since the first systematic study of colloidal MXene rheology was published in 2018 (Rheological Characteristics of 2D Titanium Carbide (MXene) Dispersions: A Guide for Processing MXenes by Akuzum, et al.), numerous works have presented small amounts of rheological data which together contribute to a deeper understanding of the topic. This work reviews the published rheological data on all MXene-containing formulations, including liquid crystals, mixtures and non-aqueous colloids, which have been used in processes such as stamping, patterning, 2D and 3D printing. An empirical model of aqueous titanium carbide viscosity has been developed, and recommendations are made to help researchers more effectively present their data for future rheological analysis. Graphic abstract


Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1395 ◽  
Author(s):  
Mohammed S. Algahtani ◽  
Abdul Aleem Mohammed ◽  
Javed Ahmad ◽  
Ehab Saleh

The use of 3D printing techniques to control drug release has flourished in the past decade, although there is no generic solution that can be applied to the full range of drugs or solid dosage forms. The present study provides a new concept, using the 3D printing technique to print a coating system in the form of shells with various designs to control/modify drug release in immediate-release tablets. A coating system of cellulose acetate in the form of an encapsulating shell was printed through extrusion-based 3D printing technology, where an immediate-release propranolol HCl tablet was placed inside to achieve a sustained drug release profile. The current work investigated the influence of shell composition by using different excipients and also by exploring the impact of shell size on the drug release from the encapsulated tablet. Three-dimensional printed shells with different ratios of rate-controlling polymer (cellulose acetate) and pore-forming agent (D-mannitol) showed the ability to control the amount and the rate of propranolol HCl release from the encapsulated tablet model. The shell-print approach also showed that space/gap available for drug dissolution between the shell wall and the enclosed tablet significantly influenced the release of propranolol HCl. The modified release profile of propranolol HCl achieved through enclosing the tablet in a 3D printed controlled-release shell followed Korsmeyer–Peppas kinetics with non-Fickian diffusion. This approach could be utilized to tailor the release profile of a Biopharmaceutics Classification System (BCS) class I drug tablet (characterized by high solubility and high permeability) to improve patient compliance and promote personalized medicine.


Nature ◽  
2013 ◽  
Vol 494 (7436) ◽  
pp. 174-174 ◽  
Author(s):  
Michael Pawlyn
Keyword(s):  

Nature ◽  
2020 ◽  
Vol 588 (7839) ◽  
pp. 594-595
Author(s):  
Cameron Darkes-Burkey ◽  
Robert F. Shepherd
Keyword(s):  

Author(s):  
Thomas Birtchnell ◽  
William Hoyle
Keyword(s):  

2018 ◽  
Vol 4 (2) ◽  
pp. 85-90
Author(s):  
Y. M. Dovydenko ◽  
N. A. Ivanova ◽  
S. A. Chizhik ◽  
V. E. Agabekov

Sign in / Sign up

Export Citation Format

Share Document