scholarly journals Investigating the rheology of 2D titanium carbide (MXene) dispersions for colloidal processing: Progress and challenges

Author(s):  
Michael Greaves ◽  
Mana Mende ◽  
Jiacheng Wang ◽  
Wenji Yang ◽  
Suelen Barg

AbstractAmong 2D materials, MXenes (especially their most studied member, titanium carbide) present a unique opportunity for application via colloidal processing, as they are electrically conductive and chemically active, whilst still being easily dispersed in water. And since the first systematic study of colloidal MXene rheology was published in 2018 (Rheological Characteristics of 2D Titanium Carbide (MXene) Dispersions: A Guide for Processing MXenes by Akuzum, et al.), numerous works have presented small amounts of rheological data which together contribute to a deeper understanding of the topic. This work reviews the published rheological data on all MXene-containing formulations, including liquid crystals, mixtures and non-aqueous colloids, which have been used in processes such as stamping, patterning, 2D and 3D printing. An empirical model of aqueous titanium carbide viscosity has been developed, and recommendations are made to help researchers more effectively present their data for future rheological analysis. Graphic abstract

2020 ◽  
Vol 16 (5) ◽  
pp. 666-674
Author(s):  
Amir M. Mortazavian ◽  
Najme Kheynoor ◽  
Zahra Pilevar ◽  
Zhaleh Sheidaei ◽  
Samira Beikzadeh ◽  
...  

The rheological analysis is important analytical tools used to obtain fundamental information about food structure. For instance, the properties of flow of liquid and semi-solidity are characterized by the consistency and flow behavior experiments as two important rheological parameters. The rheological parameters of foods are applied in quality control of the products and processing of food products such as energy input calculations, process design, equipment selection, and especially for deciding on heat exchangers and pumps. Steady flow behavior, oscillatory, and penetration tests are among commonly used parameters for evaluating rheological characteristics of ice cream. The purpose of this paper is to provide an overview of recent experiments and methods for measuring the rheological and texture properties of ice cream.


2020 ◽  
Vol 25 ◽  
pp. e00190 ◽  
Author(s):  
Johannes P. Mensing ◽  
Tanom Lomas ◽  
Adisorn Tuantranont
Keyword(s):  

2021 ◽  
Vol 7 (2) ◽  
pp. 38
Author(s):  
Nectarios Vidakis ◽  
Markos Petousis ◽  
Lazaros Tzounis ◽  
Emmanuel Velidakis ◽  
Nikolaos Mountakis ◽  
...  

In this study, nanocomposites with polyamide 12 (PA12) as the polymer matrix and multiwalled carbon nanotubes (MWCNTs) and carbon black (CB) at different loadings (2.5, 5.0, and 10.0 wt.%) as fillers, were produced in 3D printing filament form by melt mixing extrusion process. The filament was then used to build specimens with the fused filament fabrication (FFF) three-dimensional (3D) printing process. The aim was to produce by FFF 3D printing, electrically conductive and thermoelectric functional specimens with enhanced mechanical properties. All nanocomposites’ samples were electrically conductive at filler loadings above the electrical percolation threshold. The highest thermoelectric performance was obtained for the PA12/CNT nanocomposite at 10.0 wt.%. The static tensile and flexural mechanical properties, as well as the Charpy’s impact and Vickers microhardness, were determined. The highest improvement in mechanical properties was observed for the PA12/CNT nanocomposites at 5.0 wt.% filler loading. The fracture mechanisms were identified by fractographic analyses of scanning electron microscopy (SEM) images acquired from fractured surfaces of tensile tested specimens. The nanocomposites produced could find a variety of applications such as; 3D-printed organic thermoelectric materials for plausible large-scale thermal energy harvesting applications, resistors for flexible circuitry, and piezoresistive sensors for strain sensing.


Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4632
Author(s):  
Marta Dobrosielska ◽  
Robert Przekop ◽  
Bogna Sztorch ◽  
Dariusz Brząkalski ◽  
Izabela Zgłobicka ◽  
...  

New composites containing a natural filler made of diatom shells (frustules), permitting the modification of polylactide matrix, were produced by Fused Deposition Modelling (3D printing) and were thoroughly examined. Two mesh fractions of the filler were used, one of <40 µm and the other of 40−63 µm, in order to check the effect of the filler particle size on the composite properties. The composites obtained contained diatom shells in the concentrations from 0% to 5% wt. (0−27.5% vol.) and were subjected to rheological analysis. The composites obtained as filaments of 1.75 mm in diameter were used for 3D printing. The printed samples were characterized as to hydrophilic–hydrophobic, thermal and mechanical properties. The functional parameters of the printed objects, e.g., mechanical characteristics, stability on contact with water and water contact angle, were measured. The results revealed differences in the processing behavior of the samples as well as the effect of secondary granulation of the filler on the parameters of the printing and mechanical properties of the composites.


Author(s):  
Cheng Zhu ◽  
Andrew J. Pascall ◽  
Nikola Dudukovic ◽  
Marcus A. Worsley ◽  
Joshua D. Kuntz ◽  
...  

In recent years, 3D printing has led to a disruptive manufacturing revolution that allows complex architected materials and structures to be created by directly joining sequential layers into designed 3D components. However, customized feedstocks for specific 3D printing techniques and applications are limited or nonexistent, which greatly impedes the production of desired structural or functional materials. Colloids, with their stable biphasic nature, have tremendous potential to satisfy the requirements of various 3D printing methods owing to their tunable electrical, optical, mechanical, and rheological properties. This enables materials delivery and assembly across the multiple length scales required for multifunctionality. Here, a state-of-the-art review on advanced colloidal processing strategies for 3D printing of organic, ceramic, metallic, and carbonaceous materials is provided. It is believed that the concomitant innovations in colloid design and 3D printing will provide numerous possibilities for the fabrication of new constructs unobtainable using traditional methods, which will significantly broaden their applications.


2017 ◽  
Vol 84 (9) ◽  
Author(s):  
Benedikt Hampel ◽  
Samuel Monshausen ◽  
Meinhard Schilling

AbstractIn consequence of the growing diversity of materials in the fused deposition modeling 3D printing technique, electrically conductive materials are commercially available. In this work two filaments based on thermoplastics filled with carbon or metal nanoparticles are analyzed in terms of their electrical conductance. The printing parameters to process the materials with the 3D printer are optimized with the design of experiments (DoE) method. A model to calculate the resistance of such 3D printed structures is presented and a demonstrator as a proof of concept was 3D printed based on these results. In addition, 3D printing of capacitors is investigated.


2007 ◽  
Author(s):  
Maria Farsari ◽  
V. Dinca ◽  
M. Dinescu ◽  
T. S. Drakakis ◽  
C. Fotakis

Sign in / Sign up

Export Citation Format

Share Document