Pull-off force modeling and experimental study of PDMS stamp considering preload in micro transfer printing

2020 ◽  
Vol 193-194 ◽  
pp. 134-140
Author(s):  
Cunman Liang ◽  
Fujun Wang ◽  
Zhichen Huo ◽  
Beichao Shi ◽  
Yanling Tian ◽  
...  
Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 1076
Author(s):  
Florentyna Sosada-Ludwikowska ◽  
Robert Wimmer-Teubenbacher ◽  
Anton Köck

Multi-nanowire based chemical gas sensors were produced employing a fast and simple transfer printing technology. SnO2 nanowires (NWs) were grown by a specific two-step technology including spray pyrolysis deposition and a thermal annealing process in presence of a Cu-catalyst. Subsequently the SnO2 NWs were print transferred by a polydimethylsiloxane (PDMS) stamp on Si-substrates with gold inter-digital electrode structures (IDES) creating a multi-NW chemical sensing device. The print-transfer technology enables a fast, easy and cheap fabrication of NW-based sensor devices with a good reproducibility. High sensitivity to H2S has been achieved, the performance results are presented in this work.


2016 ◽  
Vol 4 (16) ◽  
pp. 3467-3476 ◽  
Author(s):  
Juanjuan Wang ◽  
Jixun Xie ◽  
Chuanyong Zong ◽  
Xue Han ◽  
Haipeng Ji ◽  
...  

Switchable transfer printing with different “soft/hard” combinations of the PDMS stamp and substrate assisted by surface oxidation.


Coatings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1201
Author(s):  
Ling Jiang ◽  
Mengjie Wu ◽  
Qiuping Yu ◽  
Yuxia Shan ◽  
Yuyan Zhang

Microtransfer printing is a sophisticated technique for the heterogeneous integration of separately fabricated micro/nano-elements into functional systems by virtue of an elastomeric stamp. One important factor influencing the capability of this technique depends on the adhesion between the viscoelastic stamp and the transferred element. To provide theoretical guidance for the control of adhesion in the transfer printing process, a finite element model for the viscoelastic adhesive contact between a polydimethylsiloxane (PDMS) stamp and a spherical transferred element was established, in which the adhesive interaction was modeled by the Lennard-Jones surface force law. Effects of the unloading velocity, preload, and thermodynamic work of adhesion on the adhesion strength, characterized by the pull-off force, were examined for a loading-dwelling-unloading history. Simulation results showed that the unloading path deviated from the loading path due to the viscoelastic property of the PDMS stamp. The pull-off force increased with the unloading velocity, and the increasing ratio was large at first and then became low. Furthermore, the influence of the preload on increasing the pull-off force was more significant under larger unloading velocity than that under smaller unloading velocity. In addition, the pull-off force increased remarkably with the thermodynamic work of adhesion at a fixed maximum approach.


2019 ◽  
Vol 13 (6) ◽  
pp. 810-816
Author(s):  
Arata Kaneko ◽  
◽  
Taira Katayama ◽  
Shun Morishita

Transfer printing of a thin film is a great candidate technique for micro/nanofabrication for microelectromechanical system (MEMS) elements. The authors propose a technique to apply atomic diffusion bonding to transfer printing of a gold (Au) thin film. When a substrate is previously coated with Au thin film as an adhesive, another Au thin film can be transfer-printed from a h-PDMS stamp to the substrate. It enables 50 μm-wide line patterns of the Au thin film located on the Au-coated Si substrate, whereas the Au thin film cannot be transfer-printed on a bare (uncoated) Si surface. The interface between two Au thin films disappears after transfer printing; hence, the Au atoms can interdiffuse from one to another to make a strong bonding. This process can be performed with a soft contact without any pressure in atmospheric and vacuum conditions. In the case of Au, the atoms can interdiffuse around a contacted area at room temperature. Moreover, one can make 50 μm-wide line patterns by 1 min of transfer printing and that of 24 h. The proposed process makes the line patterns of the Au thin film transfer-printed to be a bridged microbeam over the grooves when a prestructured (grooved) substrate is prepared.


2012 ◽  
Vol 22 (42) ◽  
pp. 22763 ◽  
Author(s):  
Kyunghee Lee ◽  
Joohee Kim ◽  
Kyusoon Shin ◽  
Youn Sang Kim

Author(s):  
Norio Baba ◽  
Norihiko Ichise ◽  
Syunya Watanabe

The tilted beam illumination method is used to improve the resolution comparing with the axial illumination mode. Using this advantage, a restoration method of several tilted beam images covering the full azimuthal range was proposed by Saxton, and experimentally examined. To make this technique more reliable it seems that some practical problems still remain. In this report the restoration was attempted and the problems were considered. In our study, four problems were pointed out for the experiment of the restoration. (1) Accurate beam tilt adjustment to fit the incident beam to the coma-free axis for the symmetrical beam tilting over the full azimuthal range. (2) Accurate measurements of the optical parameters which are necessary to design the restoration filter. Even if the spherical aberration coefficient Cs is known with accuracy and the axial astigmatism is sufficiently compensated, at least the defocus value must be measured. (3) Accurate alignment of the tilt-azimuth series images.


Sign in / Sign up

Export Citation Format

Share Document