Structural response of steel lined pipes under cyclic bending

Author(s):  
Ilias Gavriilidis ◽  
Spyros A. Karamanos
2015 ◽  
Vol 25 (2) ◽  
pp. 141-150 ◽  
Author(s):  
Jan Winkler ◽  
Christos Georgakis ◽  
Gregor Fischer ◽  
Sharon Wood ◽  
Wassim Ghannoum

2020 ◽  
Vol 15 (1) ◽  
pp. 37-44
Author(s):  
El Mehdi Echebba ◽  
Hasnae Boubel ◽  
Oumnia Elmrabet ◽  
Mohamed Rougui

Abstract In this paper, an evaluation was tried for the impact of structural design on structural response. Several situations are foreseen as the possibilities of changing the distribution of the structural elements (sails, columns, etc.), the width of the structure and the number of floors indicates the adapted type of bracing for a given structure by referring only to its Geometric dimensions. This was done by studying the effect of the technical design of the building on the natural frequency of the structure with the study of the influence of the distribution of the structural elements on the seismic response of the building, taking into account of the requirements of the Moroccan earthquake regulations 2000/2011 and using the ANSYS APDL and Robot Structural Analysis software.


Author(s):  
Y.P. Manshin ◽  
◽  
E.Yu. Manshina ◽  

The article considers an algorithm for analyzing the results of field strain-measurement studies of machine structures, which allows obtaining data for the modernization of elements in the form of coefficients of parameter changes. As the object of application of the method, the design element of the header was selected, which had failures due to insufficient endurance under cyclic bending stresses.


2012 ◽  
Vol 60 (2) ◽  
pp. 205-213
Author(s):  
K. Dems ◽  
Z. Mróz

Abstract. An elastic structure subjected to thermal and mechanical loading with prescribed external boundary and varying internal interface is considered. The different thermal and mechanical nature of this interface is discussed, since the interface form and its properties affect strongly the structural response. The first-order sensitivities of an arbitrary thermal and mechanical behavioral functional with respect to shape and material properties of the interface are derived using the direct or adjoint approaches. Next the relevant optimality conditions are formulated. Some examples illustrate the applicability of proposed approach to control the structural response due to applied thermal and mechanical loads.


Author(s):  
Liang-Yee Cheng ◽  
Rubens Augusto Amaro Junior

Author(s):  
Byoung-Joon Kim ◽  
Hae-A-Seul Shin ◽  
In-Suk Choi ◽  
Young-Chang Joo

Abstract The electrical resistance Cu film on flexible substrate was investigated in cyclic bending deformation. The electrical resistance of 1 µm thick Cu film on flexible substrate increased up to 120 % after 500,000 cycles in 1.1 % tensile bending strain. Crack and extrusion were observed due to the fatigue damage of metal film. Low bending strain did not cause any damage on metal film but higher bending strain resulted in severe electrical and mechanical damage. Thinner film showed higher fatigue resistance because of the better mechanical property of thin film. Cu film with NiCr under-layer showed poorer fatigue resistance in tensile bending mode. Ni capping layer did not improve the fatigue resistance of Cu film, but Al capping layer suppressed crack formation and lowered electrical resistance change. The NiCr under layer, Ni capping layer, and Al capping layer effect on electrical resistance change of Cu film was compared with Cu only sample.


2018 ◽  
Vol 55 (4) ◽  
pp. 341-349 ◽  
Author(s):  
Beom-Il Kim ◽  
Min-Su Kim ◽  
Sun-Kee Seo ◽  
Jae-Hong Park

Sign in / Sign up

Export Citation Format

Share Document