Heat dissipation optimization and prediction for three-dimensional fan-out package

2021 ◽  
Vol 166 ◽  
pp. 106983
Author(s):  
Jinfeng Huang ◽  
Zhenzhi He ◽  
Chunxiao Li ◽  
Libo Zhao ◽  
Xiangning Lu
2009 ◽  
Vol 2009 ◽  
pp. 1-13 ◽  
Author(s):  
N. Gupta ◽  
G. F. Alapatt ◽  
R. Podila ◽  
R. Singh ◽  
K. F. Poole

We present a comprehensive review on prospects for one-, two-, or three-dimensional nanostructure-based solar cells for manufacturing the future generation of photovoltaic (PV) modules. Reducing heat dissipation and utilizing the unabsorbed part of the solar spectrum are the key driving forces for the development of nanostructure-based solar cells. Unrealistic assumptions involved in theoretical work and the tendency of stretching observed experimental results are the primary reasons why quantum phenomena-based nanostructures solar cells are unlikely to play a significant role in the manufacturing of future generations of PV modules. Similar to the invention of phase shift masks (to beat the conventional diffraction limit of optical lithography) clever design concepts need to be invented to take advantage of quantum-based nanostructures. Silicon-based PV manufacturing will continue to provide sustained growth of the PV industry.


2011 ◽  
Vol 2011 (CICMT) ◽  
pp. 000159-000165
Author(s):  
M. Wilson ◽  
H. Anderson ◽  
J. Fellows ◽  
C. Lewinsohn

Heat dissipation has become a major hurdle for the electronics industry, especially as higher performance integrated circuits are being developed for the power industry. Two of the primary hurdles in dissipating this heat are:The thermal contact resistance between the IC and the cooling device.The ability to effectively spread the heat, such that traditional cooling technologies can be effective.By selecting ceramic materials that are thermo-mechanically matched (CTE) to IC materials, the proposed heat plate can be directly bonded by typical solder or braze techniques to the back-side of the IC. This eliminates thermal resistances due to contact and thermal interface materials. Within these heat plates, a three dimensional network of gas channels and fluid wicks spread the high-flux heat loads from localized hot spots to the surrounding regions via phase change fluids and mass transport. Like traditional heat pipes, these heat plates operate at nearly uniform temperature due to the phase change. The internal networks provide for multidimensional heat and mass flow, increasing their dissipating capability. By using matched ceramic materials, and the inclusion of a heat plate, these primary hurdles for heat dissipation can be mitigated. The performance of prototypical planar heat plates will be presented.


2011 ◽  
Vol 2011 (1) ◽  
pp. 000527-000533 ◽  
Author(s):  
Peter Uhlig ◽  
Sybille Holzwarth ◽  
Bahram Sanadgol ◽  
Alexandra Serwa

Low loss LTCC (Low Temperature Cofired Ceramics) materials have already demonstrated their virtues for high density packaging of mm-wave modules and their capability to handle the inherent requirements of heat dissipation. A 60 GHz substrate integrated waveguide fed steerable antenna array is one example of the driving applications for new challenges in the LTCC process. This antenna is suitable for transmit and receive in the 60 GHz WPAN frequency band [1]. Integrating antenna array and mm-wave front-end in one module is a consequent way to avoid amplitude and phase uncertainties associated with connectors and cables. A compact module also helps to reduce losses in the signal path by providing short interconnects. This is important for mm-Wave systems, particularly for the receiver. The antenna design presented here requires a three-dimensional surface structure with features like small and precise cavities and grooves. Different methods to fabricate cavities in LTCC modules will be discussed and a new method which proved suitable for the demanding application will be presented in detail.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Kai-Han Su ◽  
Cherng-Yuh Su ◽  
Cheng-Ta Cho ◽  
Chung-Hsuan Lin ◽  
Guan-Fu Jhou ◽  
...  

Abstract The issue of electronic heat dissipation has received much attention in recent times and has become one of the key factors in electronic components such as circuit boards. Therefore, designing of materials with good thermal conductivity is vital. In this work, a thermally conductive SBP/PU composite was prepared wherein the spherical h-BN@PMMA (SBP) composite powders were dispersed in the polyurethane (PU) matrix. The thermal conductivity of SBP was found to be significantly higher than that of the pure h-BN/PU composite at the same h-BN filler loading. The SBP/PU composite can reach a high thermal conductivity of 7.3 Wm−1 K−1 which is twice as high as that of pure h-BN/PU composite without surface treatment in the same condition. This enhancement in the property can be attributed to the uniform dispersion of SBP in the PU polymer matrix that leads to a three-dimensional continuous heat conduction thereby improving the heat diffusion of the entire composite. Hence, we provide a valuable method for preparing a 3-dimensional heat flow path in polyurethane composite, leading to a high thermal conductivity with a small amount of filler.


Author(s):  
Muhammad Omer Khan ◽  
Ellen Chan ◽  
Siu N. Leung ◽  
Hani Naguib ◽  
Francis Dawson ◽  
...  

This paper studies the development of new multifunctional liquid crystal polymeric composites filled with graphene nano platelets (GNPs) for electronic packaging applications. A series of parametric studies were conducted to study the effect of GNP content on the thermal conductivity of LCP-based nanocomposites. Graphene, ranging from 10 wt. % to 50 wt. %, were melt-compounded with LCP using a twin-screw compounder. The extrudates were ground and compression molded into small disc-shaped specimens. The thermal conductivity of LCP matrix was observed to have increased by more than 1000% where as the electrical conductivity increased by 13 orders of magnitude with the presence of 50 wt% GNP fillers. The morphology of the composites was analyzed using SEM micrographs to observe the dispersion of filler within the matrix. These thermally conductive composites represent potential cost-effective materials to injection mold three-dimensional, net-shape microelectronic enclosures with superior heat dissipation performance.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Hokyun Rho ◽  
Seungmin Lee ◽  
Sukang Bae ◽  
Tae-Wook Kim ◽  
Dong Su Lee ◽  
...  

Author(s):  
Ashok Raman ◽  
Marek Turowski ◽  
Monte Mar

This paper presents full-chip scale detailed thermal simulations of three-dimensional (3D) integrated circuit (IC) stacks. The inter-layer dielectric (ILD) and inter-metal dielectric (IMD) materials inside 3D IC stacks may cause extensive localized heating. The influence of multiple layers of dielectrics on heat trapping inside the 3D stack is analyzed. Different methods to minimize such localized heating are studied. It is shown that the use of thermal vias is very effective in heat dissipation from the hot spots. Comparisons are made between several 3D IC configurations to verify these conclusions.


2012 ◽  
Vol 229-231 ◽  
pp. 2589-2592
Author(s):  
Y.L. Tsay ◽  
J.C. Cheng

This study combined the numerical analysis and experimental measurement to investigate the conjugate conduction and natural convection for a block heat source module in a three-dimensional cabinet filled and surrounded by air. The effects of Rayleigh number Ra, module position C1, ratio of block to air thermal conductivities Kbf, and ratio of board to air thermal conductivities Kpf are examined. Moreover, efforts are carried out to explore the influence of thermal interaction between the air streams inside and outside the cabinet.


2010 ◽  
Vol 139-141 ◽  
pp. 1433-1437
Author(s):  
Kai Lin Pan ◽  
Jiao Pin Wang ◽  
Jing Liu ◽  
Guo Tao Ren

Heat dissipation and cost are the key issues for light-emitting diode (LED) packaging. In this paper, based on the thermal resistance network model of LED packaging, three-dimensional heat dissipation model of high power multi-chip LED packaging is developed and analyzed with the application of finite element method. Temperature distributions of the current multi-chip LED packaging model are investigated systematically under the different materials of the chip substrate, die attach, and/or different structures of the heat sink and fin. The results show that the junction temperature can be decreased effectively by increasing the height of the heat sink, the width of the fin, and the thermal conductivity of the chip substrate and die attach materials. The lower cost and higher reliability for LED source can be obtained through reasonable selection of materials and structure parameters of the LED lighting system.


Sign in / Sign up

Export Citation Format

Share Document