scholarly journals Thermal design parameters analysis and model updating using Kriging model for space instruments

2022 ◽  
Vol 171 ◽  
pp. 107239
Author(s):  
Qinglong Cui ◽  
Guanyu Lin ◽  
Diansheng Cao ◽  
Zihui Zhang ◽  
Shurong Wang ◽  
...  
Author(s):  
Qianhao Xiao ◽  
Jun Wang ◽  
Boyan Jiang ◽  
Weigang Yang ◽  
Xiaopei Yang

In view of the multi-objective optimization design of the squirrel cage fan for the range hood, a blade parameterization method based on the quadratic non-uniform B-spline (NUBS) determined by four control points was proposed to control the outlet angle, chord length and maximum camber of the blade. Morris-Mitchell criteria were used to obtain the optimal Latin hypercube sample based on the evolutionary operation, and different subsets of sample numbers were created to study the influence of sample numbers on the multi-objective optimization results. The Kriging model, which can accurately reflect the response relationship between design variables and optimization objectives, was established. The second-generation Non-dominated Sorting Genetic algorithm (NSGA-II) was used to optimize the volume flow rate at the best efficiency point (BEP) and the maximum volume flow rate point (MVP). The results show that the design parameters corresponding to the optimization results under different sample numbers are not the same, and the fluctuation range of the optimal design parameters is related to the influence of the design parameters on the optimization objectives. Compared with the prototype, the optimized impeller increases the radial velocity of the impeller outlet, reduces the flow loss in the volute, and increases the diffusion capacity, which improves the volume flow rate, and efficiency of the range hood system under multiple working conditions.


2012 ◽  
Vol 20 (6) ◽  
pp. 1208-1217
Author(s):  
郭亮 GUO Liang ◽  
吴清文 WU Qing-wen ◽  
颜昌翔 YAN Chang-xiang

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Hong Yin ◽  
Jingjing Ma ◽  
Kangli Dong ◽  
Zhenrui Peng ◽  
Pan Cui ◽  
...  

Model updating in structural dynamics has attracted much attention in recent decades. And high computational cost is frequently encountered during model updating. Surrogate model has attracted considerable attention for saving computational cost in finite element model updating (FEMU). In this study, a model updating method using frequency response function (FRF) based on Kriging model is proposed. The optimal excitation point is selected by using modal participation criterion. Initial sample points are chosen via design of experiment (DOE), and Kriging model is built using the corresponding acceleration frequency response functions. Then, Kriging model is improved via new sample points using mean square error (MSE) criterion and is used to replace the finite element model to participate in optimization. Cuckoo algorithm is used to obtain the updating parameters, where the objective function with the minimum frequency response deviation is constructed. And the proposed method is applied to a plane truss model FEMU, and the results are compared with those by the second-order response surface model (RSM) and the radial basis function model (RBF). The analysis results showed that the proposed method has good accuracy and high computational efficiency; errors of updating parameters are less than 0.2%; damage identification is with high precision. After updating, the curves of real and imaginary parts of acceleration FRF are in good agreement with the real ones.


Author(s):  
Petko Bakardjiev ◽  
Uwe Marschner ◽  
Markus Franke ◽  
Andreas Richter ◽  
Ercan M. Altinsoy

Abstract Dielectric elastomer actuators show suitable properties to be utilized for dynamic applications, e.g. speakers, shakers and pumps, with possible benefits to existing conventional systems. In this work a method to predict the performance of dynamically actuated dielectric-elastomer roll-actuators (DERA) depending on both, material and design parameters is presented. It incorporates in combination analytical computation, FEM, as well as electromechanical networks and considers a large variety of material configurations with a multitude of constructional degrees of freedom. DERA in push-configuration exhibit a distinct modal behavior in axial direction depending on the boundary conditions and loading at the actuators end terminals, which is described sufficiently by a one-dimensional longitudinal waveguide model. Several DERA were designed, manufactured and tested. The experimental studies were in good agreement with the made predictions. They allowed for further refinement regarding interface circuits and model updating, such as the estimation of inaccessible parameters (e. g. damping coefficients). The presented model allows for extensive parameter studies and the development of tailor-made actuators for given application in a very time efficient manner.


Author(s):  
Yasushi Koito ◽  
Yusaku Nonaka ◽  
Toshio Tomimura

A heat spreader is one of the solutions for thermal management of electronic and photonic systems. By placing the heat spreader between a small heat source and a large heat sink, the heat flux is spread from the former to the latter, resulting in a lower thermal spreading resistance between them. There are many types of heat spreaders known today having different heat transfer modes, shapes and sizes. This paper describes the theoretical study to present the fundamental data for the rational use and thermal design of heat spreaders. Two-dimensional disk-shaped mathematical model of the heat spreader is constructed, and the dimensionless numerical analysis is performed to investigate the thermal spreading characteristics of the heat spreaders. From the numerical results, the temperature distribution and the heat flow inside the heat spreaders are visualized, and then the effects of design parameters are clarified. The discussion is also made on the discharge characteristics of the heat spreaders. Moreover, a simple equation is proposed to evaluate the heat spreaders.


Author(s):  
M A Mehrabian

Much of design data for plate heat exchangers remain proprietary. A step by step methodology for determination of the exchanger size and internal geometry from the knowledge of process data is scarce. Commercial computer codes do not give the user accessibility to mathematical modelling. Engineers do not usually understand the terminology and geometry of these exchangers. This article presents a manual method for thermal design of plate heat exchangers based on physically meaningful estimations, calculations, and comparisons. When there is no close agreement, it may be necessary to change one or more of the design parameters, i.e. channel (passage) velocities, wall temperatures, or corrugation inclination angle. Considerable skill and judgment is required by the thermal design engineer at this stage to decide how the tentative design should be changed to provide a rapid solution. The experienced design engineer is often able to judge on the final decision from the first or second trial designs.


2005 ◽  
Vol 127 (2) ◽  
pp. 165-170 ◽  
Author(s):  
Yaxiong Wang ◽  
G. P. Peterson

A novel flat heat pipe has been developed to assist in meeting the high thermal design requirements in high power microelectronics, power converting systems, laptop computers and spacecraft thermal control systems. Two different prototypes, each measuring 152.4 mm by 25.4 mm were constructed and evaluated experimentally. Sintered copper screen mesh was used as the primary wicking structure, in conjunction with a series of parallel wires, which formed liquid arteries. Water was selected as the working fluid. Both experimental and analytical investigations were conducted to examine the maximum heat transport capacity and optimize the design parameters of this particular design. The experimental results indicated that the maximum heat transport capacity and heat flux for Prototype 1, which utilized four layers of 100 mesh screen were 112 W and 17.4W/cm2, respectively, in the horizontal position. For Prototype 2, which utilized six layers of 150 mesh screen, these values were 123 W and 19.1W/cm2, respectively. The experimental results were in good agreement with the theoretical predictions for a mesh compact coefficient of C=1.15.


Author(s):  
Jorge E. Pacheco ◽  
Cristina H. Amon ◽  
Susan Finger

Abstract During the preliminary design stages, designers often have incomplete knowledge about the interactions among design parameters. We are developing a methodology that will enable designers to create models with levels of detail and accuracy that correspond to the current state of the design knowledge. The methodology uses Bayesian surrogate models that are updated sequentially in stages. Thus, designers can create a rough surrogate model when only a few data points are available and then refine the model as the design progresses and more information becomes available. These surrogates represent the system response when limited information is available and when few realizations of experiments or numerical simulations are possible. This paper presents a covariance-based approach for building surrogates in the preliminary design stages when bounds are not available a priori. We test the methodology using an analytical one-dimensional function and a heat transfer problem with an analytical solution, in order to obtain error measurements. We then illustrate the use of the methodology in a thermal design problem for wearable computers. In this problem, the underlying heat transfer phenomena make the system response non-intuitive. The surrogate model enables the designer to understand the relationships among the design parameters in order to specify a system with the desired behavior.


Author(s):  
Amit Dhingra ◽  
Hong G. Im ◽  
Sujit Srinivas ◽  
Erdogan Gulari

Recent advances in PEM fuel cell systems have demonstrated their role in the production of clean and efficient power. However, due to complexities and safety concerns in the storage and transport of hydrogen, development of on-board fuel processing of hydrocarbon into hydrogen is being considered a critical issue in the success of the fuel cell technology in transportation application. In this paper, a novel concept of scalable silicon micro-reactor with an integrated platinum heater is developed for preferential CO oxidation. The performance of the micro-reactor is assessed and compared to a packed-bed reactor model. Complementary experimental and modeling efforts are made to identify the optimal thermal design parameters. It is demonstrated that the silicon micro-reactors successfully achieves the objectives of scalability without suffering from loss of efficiency due to the mass transfer limitations.


Author(s):  
S Qiu

The Kriging models which are frequently used in aerodynamic shape optimization may become computationally inefficient when solving problems with large numbers of design variables. One solution to this problem would be the application of gradient-enhanced Kriging model. A gradient-enhanced Kriging and acoustic adjoint-method approach to duct acoustic problems is developed, aimed to improve the efficiency and accuracy of the existing Kriging approach at acoustic problems with many design parameters. To our knowledge, it is the first application of gradient-enhanced Kriging for duct acoustic problem. It employs a Kriging response surface in the parameter space, augmented with gradients obtained from the acoustic adjoint equations efficiently. The present paper aims at describing the potential of the gradient-enhanced Kriging method for low noise turbofan duct design. Prior to the optimization process, the implementation of the unsteady aeroacoustic adjoint method in shape optimization is validated by comparing the gradient values with that obtained by finite differences. In this work, the ordinary Kriging model and gradient-enhanced Kriging method are applied firstly to a benchmark functions and the results show that the additional gradient information can significantly enhance the accuracy of Kriging model. And then, the original Kriging-based, adjoint-based and the gradient-enhanced Kriging method are all used to model 50 variable duct acoustic problems, respectively. The test results show that this approach whose gradient information is introduced by using acoustic adjoint method developed from multimode LEE, named as acoustic gradient-enhanced Kriging, can significantly enhance the accuracy of Kriging models when the gradient data are available and thus provide an optimized low noise intake while maintaining the aerodynamic performance.


Sign in / Sign up

Export Citation Format

Share Document