Erratum to “Rat CD28 transgenic mice as a tool to study activation of T cells and CD28 signaling pathways”

Immunobiology ◽  
2005 ◽  
Vol 209 (10) ◽  
pp. 751
Author(s):  
Fernando E. Elias ◽  
Thomas Hünig ◽  
Fred Lühder
2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A536-A536
Author(s):  
Juan Dong ◽  
Cassandra Gilmore ◽  
Hieu Ta ◽  
Keman Zhang ◽  
Sarah Stone ◽  
...  

BackgroundV-domain immunoglobulin suppressor of T cell activation (VISTA) is a B7 family inhibitory immune checkpoint protein and is highly expressed on myeloid cells and T cells.1 VISTA acts as both an inhibitory ligand when expressed on antigen-presenting cells and a receptor when expressed on T cells. Our recent study has shown that VISTA is a myeloid cell-specific immune checkpoint and that blocking VISTA can reprogram suppressive myeloid cells and promote a T cell-stimulatory tumor microenvironment.2 In this study, we further demonstrate that VISTA blockade directly alters the differentiation and the suppressive function of myeloid-derived suppressor cells (MDSC).MethodsFlow cytometry was performed to examine VISTA expression on MDSCs in multiple murine tumor models including the B16BL6 melanoma model, MC38 colon cancer model, and the KPC pancreatic cancer models. To examine the role of VISTA in controlling the differentiation and suppressive function of MDSCs, we cultured wild type (WT) and VISTA.KO bone marrow progenitor cells with GM-CSF and IL-6 to induce BM -derived MDSCs.ResultsOur preliminary results show that VISTA is highly expressed on M-MDSCs in B16BL6, MC38 and KPC tumors. In BM-derived MDSCs, VISTA deletion significantly altered the signaling pathways and the differentiation of MDSCs. Multiple inflammatory signaling pathways were downregulated in VISTA KO MDSCs, resulting in decreased production of cytokines such as IL1 and chemokines such as CCL2/4/9, as well as significantly impaired their ability to suppress the activation of CD8+ T cells. The loss of suppressive function in VISTA KO MDSCs is correlated with significantly reduced expression of iNOS. To validate the results from BM-MDSCs, we sorted CD11b+CD11c-Ly6C+Ly6G- M-MDSCs and CD11b+CD11c-Ly6G+ G-MDSCs from B16BL6 tumor tissues and tested the ability of a VISTA-blocking mAb to reverse the suppressive effects of tumor-derived MDSCs. Our results show that blocking VISTA impaired the suppressive function of tumor-derived M-MDSC but not G-MDSCs.ConclusionsTaken together, these results demonstrate a crucial role of VISTA in regulating the differentiation and function of MDSCs, and that blocking VISTA abolishes MDSC-mediated T cell suppression, thereby boosting.Ethics ApprovalAll in vivo studies were reviewed and approved by Institutional Animal Care and Use Committee (Approval number 2019-2142).ReferencesXu W, Hire T, Malarkannan, S. et al. The structure, expression, and multifaceted role of immune-checkpoint protein VISTA as a critical regulator of anti-tumor immunity, autoimmunity, and inflammation. Cell Mol Immunol 2018;15:438–446.Xu W, Dong J, Zheng Y, et al. Immune-checkpoint protein VISTA regulates antitumor immunity by controlling myeloid cell-mediated inflammation and immunosuppression. Cancer Immunol Res 2019;7:1497–510.


2021 ◽  
Vol 22 (15) ◽  
pp. 7974
Author(s):  
Yu-Te Lin ◽  
Yong-Shiou Lin ◽  
Wen-Ling Cheng ◽  
Jui-Chih Chang ◽  
Yi-Chun Chao ◽  
...  

Spinocerebellar ataxia type 3 (SCA3) is a genetic neurodegenerative disease for which a cure is still needed. Growth hormone (GH) therapy has shown positive effects on the exercise behavior of mice with cerebellar atrophy, retains more Purkinje cells, and exhibits less DNA damage after GH intervention. Insulin-like growth factor 1 (IGF-1) is the downstream mediator of GH that participates in signaling and metabolic regulation for cell growth and modulation pathways, including SCA3-affected pathways. However, the underlying therapeutic mechanisms of GH or IGF-1 in SCA3 are not fully understood. In the present study, tissue-specific genome-scale metabolic network models for SCA3 transgenic mice were proposed based on RNA-seq. An integrative transcriptomic and metabolic network analysis of a SCA3 transgenic mouse model revealed that metabolic signaling pathways were activated to compensate for the metabolic remodeling caused by SCA3 genetic modifications. The effect of IGF-1 intervention on the pathology and balance of SCA3 disease was also explored. IGF-1 has been shown to invoke signaling pathways and improve mitochondrial function and glycolysis pathways to restore cellular functions. As one of the downregulated factors in SCA3 transgenic mice, IGF-1 could be a potential biomarker and therapeutic target.


Blood ◽  
1999 ◽  
Vol 94 (7) ◽  
pp. 2396-2402 ◽  
Author(s):  
Anna Cambiaggi ◽  
Sylvie Darche ◽  
Sophie Guia ◽  
Philippe Kourilsky ◽  
Jean-Pierre Abastado ◽  
...  

In humans, a minor subset of T cells express killer cell Ig-like receptors (KIRs) at their surface. In vitro data obtained with KIR+ β and γδ T-cell clones showed that engagement of KIR molecules can extinguish T-cell activation signals induced via the CD3/T-cell receptor (TCR) complex. We analyzed the T-cell compartment in mice transgenic for KIR2DL3 (Tg-KIR2DL3), an inhibitory receptor for HLA-Cw3. As expected, mixed lymphocyte reaction and anti-CD3 monoclonal antibody (MoAb)-redirected cytotoxicity exerted by freshly isolated splenocytes can be inhibited by engagement of transgenic KIR2DL3 molecules. In contrast, antigen and anti-CD3 MoAb-induced cytotoxicity exerted by alloreactive cytotoxic T lymphocytes cannot be inhibited by KIR2DL3 engagement. In double transgenic mice, Tg-KIR2DL3 × Tg-HLA-Cw3, no alteration of thymic differentiation could be documented. Immunization of double transgenic mice with Hen egg white lysozime (HEL) or Pigeon Cytochrome-C (PCC) was indistinguishable from immunization of control mice, as judged by recall antigen-induced in vitro proliferation and TCR repertoire analysis. These results indicate that KIR effect on T cells varies upon cell activation stage and show unexpected complexity in the biological function of KIRs in vivo.


1996 ◽  
Vol 26 (3) ◽  
pp. 601-609 ◽  
Author(s):  
Lorraine Poplonski ◽  
Brian Vukusic ◽  
Judy Pawling ◽  
Susan Clapoff ◽  
John Roder ◽  
...  

1998 ◽  
Vol 187 (3) ◽  
pp. 389-402 ◽  
Author(s):  
Mamoru Watanabe ◽  
Yoshitaka Ueno ◽  
Tomoharu Yajima ◽  
Susumu Okamoto ◽  
Tatsuhiko Hayashi ◽  
...  

We have demonstrated that intestinal epithelial cells produce interleukin 7 (IL-7), and IL-7 serves as a potent regulatory factor for proliferation of intestinal mucosal lymphocytes expressing functional IL-7 receptor. To clarify the mechanism by which locally produced IL-7 regulates the mucosal lymphocytes, we investigated IL-7 transgenic mice. Here we report that transgenic mice expressing murine IL-7 cDNA driver by the SRα promoter developed chronic colitis in concert with the expression of SRα/IL-7 transgene in the colonic mucosa. IL-7 transgenic but not littermate mice developed chronic colitis at 4–12 wk of age, with histopathological similarity to ulcerative colitis in humans. Southern blot hybridization and competitive PCR demonstrated that the expression of IL-7 messenger RNA was increased in the colonic mucosal lymphocytes but not in the colonic epithelial cells. IL-7 protein accumulation was decreased in the goblet cell–depleted colonic epithelium in the transgenic mice. Immunohistochemical and cytokine production analysis showed that lymphoid infiltrates in the lamina propria were dominated by T helper cell type 1 CD4+ T cells. Flow cytometric analysis demonstrated that CD4+ intraepithelial T cells were increased, but T cell receptor γ/δ T cells and CD8α/α cells were not increased in the area of chronic inflammation. Increased IL-7 receptor expression in mucosal lymphocytes was demonstrated in the transgenic mice. These findings suggest that chronic inflammation in the colonic mucosa may be mediated by dysregulation of colonic epithelial cell–derived IL-7, and this murine model of chronic colitis may contribute to the understanding of the pathogenesis of human inflammatory bowel disease.


2000 ◽  
Vol 20 (2) ◽  
pp. 702-712 ◽  
Author(s):  
Chi-Wing Chow ◽  
Roger J. Davis

ABSTRACT Calcium-stimulated nuclear factor of activated T cells (NFAT) transcription activity at the interleukin-2 promoter is negatively regulated by cyclic AMP (cAMP). This effect of cAMP is mediated, in part, by protein kinase A phosphorylation of NFAT. The mechanism of regulation involves the creation of a phosphorylation-dependent binding site for 14-3-3. Decreased NFAT phosphorylation caused by the calcium-stimulated phosphatase calcineurin, or mutation of the PKA phosphorylation sites, disrupted 14-3-3 binding and increased NFAT transcription activity. In contrast, NFAT phosphorylation caused by cAMP increased 14-3-3 binding and reduced NFAT transcription activity. The regulated interaction between NFAT and 14-3-3 provides a mechanism for the integration of calcium and cAMP signaling pathways.


Sign in / Sign up

Export Citation Format

Share Document