Microencapsulation of gallic acid by spray drying with aloe vera mucilage (aloe barbadensis miller) as wall material

2019 ◽  
Vol 138 ◽  
pp. 111461 ◽  
Author(s):  
L. Medina-Torres ◽  
D.M. Núñez-Ramírez ◽  
F. Calderas ◽  
R.F. González-Laredo ◽  
R. Minjares-Fuentes ◽  
...  
Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 310
Author(s):  
María Carolina Otálora ◽  
Andrea Wilches-Torres ◽  
Jovanny A. Gómez Castaño

In this work, the capacity of the mucilage extracted from the cladodes of Opuntia ficus-indica (OFI) and aloe vera (AV) leaves as wall material in the microencapsulation of pink guava carotenoids using spray-drying was studied. The stability of the encapsulated carotenoids was quantified using UV–vis and HPLC/MS techniques. Likewise, the antioxidant activity (TEAC), color (CIELab), structural (FTIR) and microstructural (SEM and particle size) properties, as well as the total dietary content, of both types of mucilage microcapsules were determined. Our results show that the use of AV mucilage, compared to OFI mucilage, increased both the retention of β-carotene and the antioxidant capacity of the carotenoid microcapsules by around 14%, as well as the total carotenoid content (TCC) by around 26%, and also favors the formation of spherical-type particles (Ø ≅ 26 µm) without the apparent damage of a more uniform size and with an attractive red-yellow hue. This type of microcapsules is proposed as a convenient alternative means to incorporate guava carotenoids, a natural colorant with a high antioxidant capacity, and dietary fiber content in the manufacture of functional products, which is a topic of interest for the food, pharmaceutical, and cosmetic industries.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Luiz C. Corrêa-Filho ◽  
Maria M. Lourenço ◽  
Margarida Moldão-Martins ◽  
Vítor D. Alves

Carotenoids are a class of natural pigments found mainly in fruits and vegetables. Among them,β-carotene is regarded the most potent precursor of vitamin A. However, it is susceptible to oxidation upon exposure to oxygen, light, and heat, which can result in loss of colour, antioxidant activity, and vitamin activity. Thus, the objective of this work was to study the microencapsulation process ofβ-carotene by spray drying, using arabic gum as wall material, to protect it against adverse environmental conditions. This was carried out using the response surface methodology coupled to a central composite rotatable design, evaluating simultaneously the effect of drying air inlet temperature (110-200°C) and the wall material concentration (5-35%) on the drying yield, encapsulation efficiency, loading capacity, and antioxidant activity. In addition, morphology and particles size distribution were evaluated. Scanning electron microscopy images have shown that the particles were microcapsules with a smooth surface when produced at the higher drying temperatures tested, most of them having a diameter lower than 10μm. The conditions that enabled obtaining simultaneously arabic gum microparticles with higherβ-carotene content, higher encapsulation efficiency, and higher drying yield were a wall material concentration of 11.9% and a drying inlet temperature of 173°C. The systematic approach used for the study ofβ-carotene microencapsulation process by spray drying using arabic gum may be easily applied for other core and wall materials.


2021 ◽  
pp. 110382
Author(s):  
Carlos Alberto Gómez-Aldapa ◽  
Javier Castro-Rosas ◽  
Esmeralda Rangel-Vargas ◽  
Ricardo Omar Navarro-Cortez ◽  
Zaira Esmeralda Cabrera-Canales ◽  
...  

2010 ◽  
Vol 97 (2) ◽  
pp. 154-160 ◽  
Author(s):  
P. García-Segovia ◽  
C. Mognetti ◽  
A. Andrés-Bello ◽  
J. Martínez-Monzó

Sign in / Sign up

Export Citation Format

Share Document