scholarly journals Energy consumption, physical properties and reinforcing ability of microfibrillated cellulose with high lignin content made from non-delignified spruce and pine sawdust

2021 ◽  
Vol 170 ◽  
pp. 113738
Author(s):  
Ari Ämmälä ◽  
Juho Antti Sirviö ◽  
Henrikki Liimatainen
Cellulose ◽  
2011 ◽  
Vol 18 (4) ◽  
pp. 1097-1111 ◽  
Author(s):  
Kelley L. Spence ◽  
Richard A. Venditti ◽  
Orlando J. Rojas ◽  
Youssef Habibi ◽  
Joel J. Pawlak

2018 ◽  
Vol 192 ◽  
pp. 03008
Author(s):  
Gerardo Espinosa-Garza ◽  
Imelda Loera-Hernandez ◽  
Natella Antonyan

The waste products of the wood industries, particularly pine sawdust, represent a great potential source of dietary energy for ruminants. Even though the use of pine sawdust as part of a ruminant’s diet represents an important environmental impact, studies on this subject are scarce. It is worth mentioning that pine sawdust is currently being used as a source of fibre in ovine diet. However, its digestion is limited due to its high lignin content. The objective of the present investigation consists in the design of a new treatment process for lignin degradation into pine sawdust through the use of the fungus Pleurotus ostreatus. From the results obtained, a new and sustainable food for the ruminants based on degraded pine sawdust is proposed. The experiments carried out showed significant elevation in the exploitation of the nutritious components of pine sawdust contained in the developed product due to the improvements in the digestive parameters of the ruminants. With the results obtained, besides the nutritional and environmental impact, a better control of the costs generated by the feeding of the ruminants is intended. This is due to the fact that pine sawdust does not suffer from production variation in comparison with other consumables.


Author(s):  
Maja Kostadinovska

Abstract This paper presents a study of the drawing papers from Borko Lazeski’s cartoons for a mural painting. The collection is comprised of more than 20 single pieces (170×500 cm) executed in charcoal, pencil, pastel, tempera and ink. The cartoons exhibit different types of damages, such as grease stains, moisture stains, cracks, flaking paint, areas of loss caused by insects and mould stains. The study included spot tests, ATR-FTIR and micro-Raman spectroscopy to characterise the artist’s papers. They were found to be a type of paper composed of partly bleached, neutral sulphite semi-chemical (NSSC) wood pulp originating from coniferous trees (softwood) with the occasional use of abaca fibres. The laboratory tests revealed slightly acidic conditions (pH=5.01–6.52), high lignin content (>5 %) and alum-rosin sizing. Infrared spectroscopy confirmed all findings of the spot tests. Micro-Raman spectroscopy showed the presence of gypsum in the papers. The study addresses conservation issues arising from the chemical nature of the paper support and highlights the need for an extended study in order to be able to make informed treatment choices.


2017 ◽  
Vol 13 (3) ◽  
pp. 1-9
Author(s):  
Yasmeen Salih Mahdi ◽  
Asem Hassan Mohammed ◽  
Alaa Kareem Mohammed

Abstract   In this study, modified organic solvent (organosolv) method was applied to remove high lignin content in the date palm fronds (type Al-Zahdi) which was taken from the Iraqi gardens. In modified organosolv, lignocellulosic material is fractionated into its constituents (lignin, cellulose and hemicellulose). In this process, solvent (organic)-water is brought into contact with the lignocellulosic biomass at high temperature, using stainless steel reactor (digester). Therefor; most of hemicellulose will remove from the biomass, while the solid residue (mainly cellulose) can be used in various industrial fields. Three variables were studied in this process: temperature, ratio of ethanol to water and digestion time. Statistical experimental design type Central Composite Design (CCD) has been used to find a mathematical relationship between the variables and the remaining lignin percent as dependent variable. The results obtained in this study were represented by a polynomial mathematical equation of the second degree.  The results showed that the best digestion time was (80 minutes), which gave the best percent remaining concentration of lignin (3%) at temperature of 185oC and ratio of ethanol: water equal to 50: 50 wt/wt. In order to reduce digesting time, the effect of using different catalysts have been studied such as (NaOH, H2SO4, Ca (OH) 2) at low concentration (0.025, 0.025, 0.05M) respectively. It was found that the best catalyst is sodium hydroxide at concentration (0.025) mol/L which gave the same percent of  lignin 3% but with low digestion time about 30 min. Keywords: Biomass pre-treatment, delignification, lignin, organosolv, date palm fronds.


Processes ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 591 ◽  
Author(s):  
Xuyang Cui ◽  
Junhong Yang ◽  
Xinyu Shi ◽  
Wanning Lei ◽  
Tao Huang ◽  
...  

Pelletization is a significant approach for the efficient utilization of biomass energy. Sunflower seed husk is a common solid waste in the process of oil production. The novelty of this study was to determine the parameters during production of a novel pellet made from sunflower seed husk. The energy consumption (W) and physical properties (bulk density (BD) and mechanical durability (DU)) of the novel pellet were evaluated and optimized at the laboratory by using a pelletizer and response surface methodology (RSM) under a controlled moisture content (4%–14%), compression pressure (100–200 MPa), and die temperature (70–170 °C). The results show that the variables of temperature, pressure, and moisture content of raw material are positively correlated with BD and DU. Increasing the temperature and moisture content of raw materials can effectively reduce W, while increasing the pressure has an adverse effect on W. The optimum conditions of temperature (150 °C), pressure (180 MPa), and moisture content (12%) led to a BD of 1117.44 kg/m3, DU of 98.8%, and W of 25.3 kJ/kg in the lab. Overall, although the nitrogen content was slightly high, the novel manufactured pellets had excellent performance based on ISO 17225 (International Organization for Standardization of 17225, Geneva, Switzerland, 2016). Thus, sunflower seed husk could be considered as a potential feedstock for biomass pelletization.


2009 ◽  
Vol 39 (5) ◽  
pp. 936-944 ◽  
Author(s):  
K.B. Piatek ◽  
P. Munasinghe ◽  
W.T. Peterjohn ◽  
M.B. Adams ◽  
J.R. Cumming

Ecosystem nitrogen (N), phosphorus (P), and calcium (Ca) fluxes are affected by inputs of atmospheric N. Oak litter may additionally affect these fluxes because of its high-lignin content. We analyzed nutrient dynamics in ambient mixed-species litter in an aggrading hardwood stand at the Fernow Experimental Forest in West Virginia. We separated oak from the mix for analysis (oak) and compared it with total litter (all species) to understand how oak affects nutrient fluxes in the litter layer. The study was conducted under ambient atmospheric deposition, under elevated atmospheric deposition, and under elevated deposition plus mitigation with dolomite. N flux between litterfall and 12 months later indicated a net loss in all-species litter of up to 7.3 kg N·ha–1 and a retention of up to 0.6 kg N·ha–1 in oak. P flux included losses in all species in ambient and in dolomite treatments of up to 0.19 kg P·ha–1 and gains of up to 0.12 kg P·ha–1 in oak in all treatments. Oak mineralized Ca at an average across treatments of 4.6 kg Ca·ha–1 compared with 16 kg Ca·ha–1 in all species, with half of that when trees were dormant. Percent immobilization and release over initial litter were greater in oak than in all species, but nutrient fluxes were lower in oak than in all species because of low oak litter mass. Elevated deposition lowered N and increased P immobilization. Dolomite appeared to affect early N dynamics only. With an increase in litterfall mass when forests mature, these effects are also likely to increase.


2015 ◽  
Vol 8 (1) ◽  
Author(s):  
Kengo Sasaki ◽  
Mami Okamoto ◽  
Tomokazu Shirai ◽  
Yota Tsuge ◽  
Hiroshi Teramura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document