A new hybrid ensemble feature selection framework for machine learning-based phishing detection system

2019 ◽  
Vol 484 ◽  
pp. 153-166 ◽  
Author(s):  
Kang Leng Chiew ◽  
Choon Lin Tan ◽  
KokSheik Wong ◽  
Kelvin S.C. Yong ◽  
Wei King Tiong
2020 ◽  
pp. 1-20
Author(s):  
K. Muthamil Sudar ◽  
P. Deepalakshmi

Software-defined networking is a new paradigm that overcomes problems associated with traditional network architecture by separating the control logic from data plane devices. It also enhances performance by providing a highly-programmable interface that adapts to dynamic changes in network policies. As software-defined networking controllers are prone to single-point failures, providing security is one of the biggest challenges in this framework. This paper intends to provide an intrusion detection mechanism in both the control plane and data plane to secure the controller and forwarding devices respectively. In the control plane, we imposed a flow-based intrusion detection system that inspects every new incoming flow towards the controller. In the data plane, we assigned a signature-based intrusion detection system to inspect traffic between Open Flow switches using port mirroring to analyse and detect malicious activity. Our flow-based system works with the help of trained, multi-layer machine learning-based classifier, while our signature-based system works with rule-based classifiers using the Snort intrusion detection system. The ensemble feature selection technique we adopted in the flow-based system helps to identify the prominent features and hasten the classification process. Our proposed work ensures a high level of security in the Software-defined networking environment by working simultaneously in both control plane and data plane.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4540
Author(s):  
Kieran Rendall ◽  
Antonia Nisioti ◽  
Alexios Mylonas

Phishing is one of the most common threats that users face while browsing the web. In the current threat landscape, a targeted phishing attack (i.e., spear phishing) often constitutes the first action of a threat actor during an intrusion campaign. To tackle this threat, many data-driven approaches have been proposed, which mostly rely on the use of supervised machine learning under a single-layer approach. However, such approaches are resource-demanding and, thus, their deployment in production environments is infeasible. Moreover, most previous works utilise a feature set that can be easily tampered with by adversaries. In this paper, we investigate the use of a multi-layered detection framework in which a potential phishing domain is classified multiple times by models using different feature sets. In our work, an additional classification takes place only when the initial one scores below a predefined confidence level, which is set by the system owner. We demonstrate our approach by implementing a two-layered detection system, which uses supervised machine learning to identify phishing attacks. We evaluate our system with a dataset consisting of active phishing attacks and find that its performance is comparable to the state of the art.


Electronics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 144 ◽  
Author(s):  
Yan Naung Soe ◽  
Yaokai Feng ◽  
Paulus Insap Santosa ◽  
Rudy Hartanto ◽  
Kouichi Sakurai

The application of a large number of Internet of Things (IoT) devices makes our life more convenient and industries more efficient. However, it also makes cyber-attacks much easier to occur because so many IoT devices are deployed and most of them do not have enough resources (i.e., computation and storage capacity) to carry out ordinary intrusion detection systems (IDSs). In this study, a lightweight machine learning-based IDS using a new feature selection algorithm is designed and implemented on Raspberry Pi, and its performance is verified using a public dataset collected from an IoT environment. To make the system lightweight, we propose a new algorithm for feature selection, called the correlated-set thresholding on gain-ratio (CST-GR) algorithm, to select really necessary features. Because the feature selection is conducted on three specific kinds of cyber-attacks, the number of selected features can be significantly reduced, which makes the classifiers very small and fast. Thus, our detection system is lightweight enough to be implemented and carried out in a Raspberry Pi system. More importantly, as the really necessary features corresponding to each kind of attack are exploited, good detection performance can be expected. The performance of our proposal is examined in detail with different machine learning algorithms, in order to learn which of them is the best option for our system. The experiment results indicate that the new feature selection algorithm can select only very few features for each kind of attack. Thus, the detection system is lightweight enough to be implemented in the Raspberry Pi environment with almost no sacrifice on detection performance.


Author(s):  
Mohammad Almseidin ◽  
AlMaha Abu Zuraiq ◽  
Mouhammd Al-kasassbeh ◽  
Nidal Alnidami

With increasing technology developments, the Internet has become everywhere and accessible by everyone. There are a considerable number of web-pages with different benefits. Despite this enormous number, not all of these sites are legitimate. There are so-called phishing sites that deceive users into serving their interests. This paper dealt with this problem using machine learning algorithms in addition to employing a novel dataset that related to phishing detection, which contains 5000 legitimate web-pages and 5000 phishing ones. In order to obtain the best results, various machine learning algorithms were tested. Then J48, Random forest, and Multilayer perceptron were chosen. Different feature selection tools were employed to the dataset in order to improve the efficiency of the models. The best result of the experiment achieved by utilizing 20 features out of 48 features and applying it to Random forest algorithm. The accuracy was 98.11%.


2021 ◽  
Vol 11 (1) ◽  
pp. 1-35
Author(s):  
Amit Singh ◽  
Abhishek Tiwari

Phishing was introduced in 1996, and now phishing is the biggest cybercrime challenge. Phishing is an abstract way to deceive users over the internet. Purpose of phishers is to extract the sensitive information of the user. Researchers have been working on solutions of phishing problem, but the parallel evolution of cybercrime techniques have made it a tough nut to crack. Recently, machine learning-based solutions are widely adopted to tackle the menace of phishing. This survey paper studies various feature selection method and dimensionality reduction methods and sees how they perform with machine learning-based classifier. The selection of features is vital for developing a good performance machine learning model. This work is comparing three broad categories of feature selection methods, namely filter, wrapper, and embedded feature selection methods, to reduce the dimensionality of data. The effectiveness of these methods has been assessed on several machine learning classifiers using k-fold cross-validation score, accuracy, precision, recall, and time.


2019 ◽  
Vol 8 (3) ◽  
pp. 5626-5629

Attacks are many types to disturb the network or any other websites. Phishing attacks (PA) are a type of attacks which attack the website and damage the website and may lose the data. Many types of research have been done to prevent the attacks. To overcome this, in this paper, the integrated phishing attack detection system which is adopted with SVM classifier is implemented to detect phishing websites. Phishing is the cyber attack that will destroy the website and may attack with the virus. There are two parameters that can detect the final phishing detection rate such as Identity, and security. Phishing attacks also occur in various banking and e-commerce websites. This paper deals with the UCL machine learning phishing dataset which consists of 32 attributes. The proposed algorithm implements on this dataset and shows the performance.


Sign in / Sign up

Export Citation Format

Share Document