Hysteretic performance of precast beam-column connections fabricated with high-strength materials

Structures ◽  
2021 ◽  
Vol 33 ◽  
pp. 4568-4578
Author(s):  
Weichen Xue ◽  
Xinyu Hu ◽  
Dongsheng Ren ◽  
Xiang Hu
2021 ◽  
Vol 276 ◽  
pp. 02029
Author(s):  
Jianpeng Sun ◽  
Wei Feng ◽  
RuiPeng Guo ◽  
Chunfeng Liu

In this paper, the finite element simulation software ABAQUS was used to study the hysteretic performance of Q690 high-strength steel (HSS) and high-web box-section steel columns. The finite element model was established by solid elements, and the influence of the initial defects of materials on the specimen was considered. The hyteretic performance of the specimen was conducted by analyzing and comparing the width-thickness ration of the flanges and the width-thickness ration of the webs. The results show that the increase of width-thickness ratios of the webs and flanges will reduce the hysteresis performance, the energy dissipation capacity and the ultimate horizontal bearing capacity of the specimen.


2011 ◽  
Vol 243-249 ◽  
pp. 677-681
Author(s):  
Zheng Liang Li ◽  
Chun Tao Zhang ◽  
Ru Heng Wang

The cold-formed thin-walled tube has been widely applied in high seismic fortification intensity region and post-seismic reconstruction area because of light quality, high strength and small deformation. But the connection mode and mechanical properties of beam-column connections still need further study. According to the "strong column and weak beam" seismic design principle and the thinking of control the position of plastic hinge, adding haunch slabs at the end of beam to reduce the number of repeated welding and avoid brittle fracture. Through the low cyclic loading experiment, four beam-column connections with welded haunch under different axial compression ratios have been studied, and connection’s hysteretic performance, energy-dissipating capacity, bearing capacity, rigidity and failure mode have been discussed. The result shows that: 1) the ultimate bearing capacity of connection with welded haunch is much great, and the energy dissipation capacity is very well, which can make this connection to absorb and consume great energy in earthquake. This connection can meet the need of seismic design very well. 2) The connection with welded haunch experiences much cycling time, has long yield platform after yield, has great cumulative energy-dissipating capacity and well ductility. 3) the final destruction of connection with welded haunch is caused by the beam’s local buckling. And the yield surface is almost located at the outside of connections. 4) The axial compression ratios has great effect on the hysteretic performance, bearing capacity and stiffness degradation for the connection with welded haunch.


2020 ◽  
Vol 2020 ◽  
pp. 1-22
Author(s):  
Zhijian Yang ◽  
Guochang Li ◽  
Bo Nan

Four prestressed high-strength concrete pile- (PHC pile-) pile cap connections under low-cycle loading were tested to study the test phenomena, failure modes, hysteretic performance, ductility, and bearing capacity. The PHC piles were reinforced with steel fiber and deformed bars and CFRP. The tests results showed that the connections were damaged by bending. The concrete of the caps were squeezed to be crushed. The concrete of connection was crushed and formed a hinge joint that resulted in the connection rotating unrestricted, and the rotation capacity of connection increased. The PHC pile reinforced with steel fiber and deformed bars can improve the displacement ductility of the connections. The finite element software ABAQUS was used to simulate the nonlinear behavior of pile-cap connections. The prediction agreed relatively well with the experimental results. The stress and strain of specimens were studied. The connections should be designed with enough rotating capacity and make sure the cap will not be damaged by squeezing or prying due to the rotation of pile end.


Author(s):  
Jiantao Wang ◽  
Qing Sun

Under violent earthquake motions, the severe damage in critical regions of structures could be ascribed to cumulative damage caused by cyclic loading. Using the high strength (HS) materials in concrete-filled steel tubular (CFST) columns is the effective way and popular tendency to promote the seismic behavior in anti-seismic design. In this paper, an experimental study on the hysteretic performance of high strength circular concrete-filled thin-walled steel tubular columns (HCFTST) columns was carried out. A total of six specimens were tested under constant axial compression combining cyclic lateral loading. The tested parameters were the different combinations of diameter-to-thickness (D/t) ratio, axial compression ratio (n) and concrete cylinder compressive strength (fc).The failure modes, load-displacement hysteretic curves, skeleton curves, dissipated energy and stiffness degradation were examined in detail. Through the experiment analysis result, it indicates that the ultimate limit state is reached as the severe local buckling and rupture of the steel tubes accompanying the core concrete crushing occur. Using high strength materials could have a larger elastic deformation capacity and the higher axial compression ratio within test scopes could motivate the potential of HS materials. In brief, the HCFTST columns with ultra-large D/t ratios under reasonable design could perform excellent hysteretic performance, which can be applied in earthquake-prone regions widely.


2015 ◽  
Vol 777 ◽  
pp. 27-33 ◽  
Author(s):  
Xu Feng Li ◽  
Xin Wu Wang

The force performance of semi-rigid nodes connection between rigid connection and hinged connection ,which has very high strength and rigidity, good ductility and energy dissipation capacity. At present, it is one of the hot topics in the study of steel structure. This article will study about type T and cross-shaped frame plane frame node characteristics by some experiments. And we will observe the deflection of the two kinds of nodes, the force transmission mechanism and the failure pattern under low reversed cyclic loading test.And then compare the failure mechanism of failure mode and ultimate deformation state and hysteretic performance of the two kinds of nodes, The test results show that the yield load and the yield displacement and energy dissipation coefficient and the equivalent viscous damping ratio of Cross nodes are all greater than type T nodes’. So in the design of steel structure, increasing the component’s constraint can help to improve the seismic performance and stability of the whole structure.


2013 ◽  
Vol 438-439 ◽  
pp. 1466-1470
Author(s):  
Tie Cheng Wang ◽  
Wen Jin Wang ◽  
Hai Long Zhao ◽  
Zhi Jian Yang

The main purpose of this paper is to study the seismic performance of prestressed reinforced concrete pile (PRC pile) reinforced with nonprestressed reinforcements. Two prestressed high strength concrete piles (PHC piles) and two PRC piles were tested. The variables studied in this research are the prestressed reinforcements ratio and nonprestressed reinforcements ratio. The piles subjected to low-cycle loading were presented in this paper, including the hysteretic performance, stiffness degradation curves, coefficient of equivalent viscous damping and skeleton-frame curves. It is shown that the failure modes of all specimens are bending damage from the test and PRC piles have good energy-absorbing hysteretic behavior.


Author(s):  
Y. L. Chen ◽  
S. Fujlshiro

Metastable beta titanium alloys have been known to have numerous advantages such as cold formability, high strength, good fracture resistance, deep hardenability, and cost effectiveness. Very high strength is obtainable by precipitation of the hexagonal alpha phase in a bcc beta matrix in these alloys. Precipitation hardening in the metastable beta alloys may also result from the formation of transition phases such as omega phase. Ti-15-3 (Ti-15V- 3Cr-3Al-3Sn) has been developed recently by TIMET and USAF for low cost sheet metal applications. The purpose of the present study was to examine the aging characteristics in this alloy.The composition of the as-received material is: 14.7 V, 3.14 Cr, 3.05 Al, 2.26 Sn, and 0.145 Fe. The beta transus temperature as determined by optical metallographic method was about 770°C. Specimen coupons were prepared from a mill-annealed 1.2 mm thick sheet, and solution treated at 827°C for 2 hr in argon, then water quenched. Aging was also done in argon at temperatures ranging from 316 to 616°C for various times.


Author(s):  
L.J. Chen ◽  
H.C. Cheng ◽  
J.R. Gong ◽  
J.G. Yang

For fuel savings as well as energy and resource requirement, high strength low alloy steels (HSLA) are of particular interest to automobile industry because of the potential weight reduction which can be achieved by using thinner section of these steels to carry the same load and thus to improve the fuel mileage. Dual phase treatment has been utilized to obtain superior strength and ductility combinations compared to the HSLA of identical composition. Recently, cooling rate following heat treatment was found to be important to the tensile properties of the dual phase steels. In this paper, we report the results of the investigation of cooling rate on the microstructures and mechanical properties of several vanadium HSLA steels.The steels with composition (in weight percent) listed below were supplied by China Steel Corporation: 1. low V steel (0.11C, 0.65Si, 1.63Mn, 0.015P, 0.008S, 0.084Aℓ, 0.004V), 2. 0.059V steel (0.13C, 0.62S1, 1.59Mn, 0.012P, 0.008S, 0.065Aℓ, 0.059V), 3. 0.10V steel (0.11C, 0.58Si, 1.58Mn, 0.017P, 0.008S, 0.068Aℓ, 0.10V).


Author(s):  
L. S. Lin ◽  
C. C. Law

Inconel 718, a precipitation hardenable nickel-base alloy, is a versatile high strength, weldable wrought alloy that is used in the gas turbine industry for components operated at temperatures up to about 1300°F. The nominal chemical composition is 0.6A1-0.9Ti-19.OCr-18.0Fe-3Mo-5.2(Cb + Ta)- 0.1C with the balance Ni (in weight percentage). The physical metallurgy of IN 718 has been the subject of a number of investigations and it is now established that hardening is due, primarily, to the formation of metastable, disc-shaped γ" an ordered body-centered tetragonal structure (DO2 2 type superlattice).


Author(s):  
R. E. Herfert ◽  
N. T. McDevitt

Durability of adhesive bonded joints in moisture and salt spray environments is essential to USAF aircraft. Structural bonding technology for aerospace applications has depended for many years on the preparation of aluminum surfaces by a sulfuric acid/sodium dichromate (FPL etch) treatment. Recently, specific thin film anodizing techniques, phosphoric acid, and chromic acid anodizing have been developed which not only provide good initial bond strengths but vastly improved environmental durability. These thin anodic films are in contrast to the commonly used thick anodic films such as the sulfuric acid or "hard" sulfuric acid anodic films which are highly corrosion resistant in themselves, but which do not provide good initial bond strengths, particularly in low temperature peel.The objective of this study was to determine the characteristics of anodic films on aluminum alloys that make them corrosion resistant. The chemical composition, physical morphology and structure, and mechanical properties of the thin oxide films were to be defined and correlated with the environmental stability of these surfaces in humidity and salt spray. It is anticipated that anodic film characteristics and corrosion resistance will vary with the anodizing processing conditions.


Sign in / Sign up

Export Citation Format

Share Document