Causes and control to lateral displacement of the main girder in the super-long-span cable-stayed bridge with transverse asymmetry dead load

Structures ◽  
2022 ◽  
Vol 37 ◽  
pp. 168-184
Author(s):  
Jinxiang Zhang ◽  
Mingjin Zhang ◽  
Xulei Jiang ◽  
Renan Yuan ◽  
Jisheng Yu ◽  
...  
2014 ◽  
Vol 2014 ◽  
pp. 1-16
Author(s):  
Gao-Xin Wang ◽  
You-Liang Ding

Based on the health monitoring system installed on the main span of Sutong Cable-Stayed Bridge, GPS displacement and wind field are real-time monitored and analyzed. According to analytical results, apparent nonlinear correlation with certain discreteness exists between lateral static girder displacement and lateral static wind velocity; thus time series of lateral static girder displacement are decomposed into nonlinear correlation term and discreteness term, nonlinear correlation term of which is mathematically modeled by third-order Fourier series with intervention of lateral static wind velocity and discreteness term of which is mathematically modeled by the combined models of ARMA(7,4)and EGARCH(2,1). Additionally, stable power spectrum density exists in time series of lateral dynamic girder displacement, which can be well described by the fourth-order Gaussian series; thus time series of lateral dynamic girder displacement are mathematically modeled by harmonic superposition function. By comparison and verification between simulative and monitoring lateral girder displacements from September 1 to September 3, the presented mathematical models are effective to simulate time series of lateral girder displacement from main girder of Sutong Cable-Stayed Bridge.


2014 ◽  
Vol 501-504 ◽  
pp. 1364-1367
Author(s):  
Yong Zhe Niu ◽  
Wen Jie Guo ◽  
Guang Ling Li ◽  
Rui Xin Sun

Anti-seismic property was essential in the progress of bridge designing and construction due to destructive power of earthquake disaster and increasing span of bridge. This paper elaborated theory method of analysis, taking five spans continuous cable-stayed bridge which was half floating system as an engineering background, and using method of special finite element analysis to calculating dynamic characteristics and seismic response respectively which also considered longitudinal limit damping and stiffness of cable under longitudinal, transverse, vertical and three-dimensional seismic oscillation. Fundamental frequency of cable-stayed bridge was affected significantly with considering longitudinal limit damping, so connection measures would be determined reasonably in designing and analyzing anti-seismic property of long-span cable-stayed bridge. When response spectrum analysis was adopted, longitudinal and vertical displacement were larger than lateral displacement under longitudinal seismic oscillation, lateral seismic oscillation only affected the structural lateral displacement, and vertical seismic oscillation affected vertical and longitudinal displacement.


2011 ◽  
Vol 255-260 ◽  
pp. 1107-1114
Author(s):  
Xiao Li Li ◽  
Ru Cheng Xiao ◽  
Dong Liang Li ◽  
Zhi Guo Sun ◽  
Ying Fang Fan

Effects of stiffness, carrying efficiency and fatigue of the end anchor cable on the mechanical behavior of long span cable-stayed bridge, were discussed respectively. Firstly, the concept of the effective stiffness and the stress ratio were introduced to discuss the effects of the dead load stress level and the stress ratio on the effective stiffness of the end anchor cable. Secondly, the effect of the cable material on the vertical carrying efficiency of the structure was analyzed. Finally, the main influential factors on the fatigue performance of the end anchor cable were analyzed in detail. It is shown that improving the dead load stress level and keeping the low stress ratio would increase the effective stiffness of the end anchor cable. The section of the end anchor cable effects on stiffness of the structure under high stress level. It can be drawn that as a novel material, The CFRP end anchor cable will increase the load carrying level of the long span cable-stayed bridges. It can also be concluded that the length of side span and main span, the height of pylon, the area of the cable section and the live load collection degree are all the main effective factors to the stress amplitude of the end anchor cable. It is suggested that in the practical design of large span cable-stayed bridge, all the effective factors together with the global state of the structure should be taken into account comprehensively.


2011 ◽  
Vol 255-260 ◽  
pp. 1795-1799
Author(s):  
De Shan Shan ◽  
Yuan He ◽  
Li Qiao

As the floating type cable-stayed bridge has no longitudinal constraint between the main girder and the pylon, it may cause the main girder a large longitudinal displacement and the root of tower a large longitudinal bending moment, and affect the normal use and safety of the bridge under the earthquake or the train braking. It is an important part of the design to select an appropriate vibration control scheme. Taking a long-span railway bridge for example, this paper build the finite element model and analyses the damping effect in the view of train braking, moreover, the present study also examines the dynamic behavior with focus on two parameters of damping coefficient C and damping exponent αof the viscous dampers through dynamic time-history analysis. The results show that setting viscous dampers with the reasonable parameters can reduce the vibration and the response of the bridge by train braking and have a good energy dissipation effect.


2017 ◽  
Vol 2017 ◽  
pp. 1-18 ◽  
Author(s):  
Xuewei Wang ◽  
Bing Zhu ◽  
Shengai Cui

In order to present the collapse process and failure mechanism of long-span cable-stayed bridges under strong seismic excitations, a rail-cum-road steel truss cable-stayed bridge was selected as engineering background, the collapse failure numerical model of the cable-stayed bridge was established based on the explicit dynamic finite element method (FEM), and the whole collapse process of the cable-stayed bridge was analyzed and studied with three different seismic waves acted in the horizontal longitudinal direction, respectively. It can be found from the numerical simulation analysis that the whole collapse failure process and failure modes of the cable-stayed bridge under three different seismic waves are similar. Furthermore, the piers and the main pylons are critical components contributing to the collapse of the cable-stayed bridge structure. However, the cables and the main girder are damaged owing to the failure of piers and main pylons during the whole structure collapse process, so the failure of cable and main girder components is not the main reason for the collapse of cable-stayed bridge. The analysis results can provide theoretical basis for collapse resistance design and the determination of critical damage components of long-span highway and railway cable-stayed bridges in the research of seismic vulnerability analysis.


2014 ◽  
Vol 501-504 ◽  
pp. 1274-1278 ◽  
Author(s):  
Yong Tao Zhang ◽  
Xin Li ◽  
Xin Peng You

Jiu-Jiang Yangtze River Highway Bridge, with a main span of 818m, is another long span hybrid girder cable-stayed bridge which connects Jiang Xi province and Hu Bei province in China. Steel box girder is adopted in main span and north side span, and main girder of south side span and south tower nearby is designed of concrete box girder. The pylon is concrete structure, with the height of 242.3m and H-shape. There are 216 cables used in this bridge, of which are assembled by parallel strands. Jiu-Jiang Yangtze River Highway Bridge began to construct in 2009, and was closed in December, 2012. The bridge opened to traffic officially in the next year. Design concept, construction method and vibration control measures about Jiu-Jiang Yangtze River Highway Bridge are introduced in this article.


2014 ◽  
Vol 638-640 ◽  
pp. 942-946
Author(s):  
Shuang Rui Chen ◽  
Quan Sheng Yan

It is introduced that three main factors cause geometric nonlinear effects of long span cable-stayed bridge: large displacement effect, cable sag effect, and the combination of bending moment and axial force effect. The iteration method of geometrical nonlinear problem is also introduced. The bridge deformation was calculated by establishing a plane truss finite element model of a long-span single tower cable-stayed bridge under consideration of nonlinearity and compared with that done with linear method. It is concluded that nonlinearity influenced differently to the bending moment of main girder, the displacement of tower root and the vertical displacement of girder.


2021 ◽  
pp. 136943322110015
Author(s):  
Xiao-Li Xie ◽  
Yang Huang ◽  
Xia Qin

In order to overcome the apparent characteristics as a flexible structure of a long-span single-tower cable-stayed bridge and the excessive axial force of the main girder, and to exert the advantages of cable-stayed arch cooperative system bridges, this paper proposes a new type of single-tower cable-stayed arch cooperative system bridge. On the premise of the same amount of steel, the new cooperative system bridge can have a greater stiffness than the existing cable-stayed arch cooperative system bridge with the same span. The new system bridge uses the main girder as the rigid tie bar to balance the arches’ thrusts, which enables the main girder to have a smaller axial force and makes the cable-stayed arch cooperative system bridge a thrustless structure. The proposed bridge is assembled by the following method: (a) constructing a cable-stayed bridge with a steel box girder to bear part of the dead load and to act as a construction platform firstly; (b) then installing arch structures and fixing they with the girder to bear the remaining dead load; and, (c) adding web members between the arch ribs and the girder to form a variable-height truss structure with the arch ribs as the upper chords and the girder as a lower chord to bear most of the live load at last. The underlying mechanical principles were explained, and the mechanical properties of the cooperative system bridges were calculated with the finite element method in this paper. The stiffness and axial forces in the girders are analyzed by the finite element method and compared with those of the conventional bridges. The FEA results show that the new cooperative system bridge has the truss structure’s characteristics, which shows apparent advantages of stiffness and much smaller axial force in the main girder.


Sign in / Sign up

Export Citation Format

Share Document