Conceptual design of a new type of single-tower cable-stayed arch bridge and study of its mechanical properties

2021 ◽  
pp. 136943322110015
Author(s):  
Xiao-Li Xie ◽  
Yang Huang ◽  
Xia Qin

In order to overcome the apparent characteristics as a flexible structure of a long-span single-tower cable-stayed bridge and the excessive axial force of the main girder, and to exert the advantages of cable-stayed arch cooperative system bridges, this paper proposes a new type of single-tower cable-stayed arch cooperative system bridge. On the premise of the same amount of steel, the new cooperative system bridge can have a greater stiffness than the existing cable-stayed arch cooperative system bridge with the same span. The new system bridge uses the main girder as the rigid tie bar to balance the arches’ thrusts, which enables the main girder to have a smaller axial force and makes the cable-stayed arch cooperative system bridge a thrustless structure. The proposed bridge is assembled by the following method: (a) constructing a cable-stayed bridge with a steel box girder to bear part of the dead load and to act as a construction platform firstly; (b) then installing arch structures and fixing they with the girder to bear the remaining dead load; and, (c) adding web members between the arch ribs and the girder to form a variable-height truss structure with the arch ribs as the upper chords and the girder as a lower chord to bear most of the live load at last. The underlying mechanical principles were explained, and the mechanical properties of the cooperative system bridges were calculated with the finite element method in this paper. The stiffness and axial forces in the girders are analyzed by the finite element method and compared with those of the conventional bridges. The FEA results show that the new cooperative system bridge has the truss structure’s characteristics, which shows apparent advantages of stiffness and much smaller axial force in the main girder.

2009 ◽  
Vol 294 ◽  
pp. 27-38 ◽  
Author(s):  
Fabian Ferrano ◽  
Marco Speich ◽  
Wolfgang Rimkus ◽  
Markus Merkel ◽  
Andreas Öchsner

This paper investigates the mechanical properties of a new type of hollow sphere structure. For this new type, the sphere shell is perforated by several holes in order to open up the inner sphere volume and surface. The mechanical behaviour of perforated sphere structures under large deformations and strains in a primitive cubic arrangement is numerically evaluated by using the finite element method for different hole diameters and different joining techniques.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4842
Author(s):  
Huanping Yang ◽  
Wei Zhuang ◽  
Wenbin Yan ◽  
Yaomian Wang

The nanoindentation loading response of elastoplastic materials was simulated by the finite element method (FEM). The influence of the Young’s modulus E, yield stress σy, strain hardening exponent n and Poisson’s ratio ν on the loading response was investigated. Based on an equivalent model, an equation with physical meaning was proposed to quantitatively describe the influence. The calculations agree well with the FEM simulations and experimental results in literature. Comparisons with the predictions using equations in the literature also show the reliability of the proposed equation. The investigations show that the loading curvature C increases with increasing E, σy, n and ν. The increase rates of C with E, σy, n and ν are different for their different influences on the flow stress after yielding. It is also found that the influence of one of the four mechanical parameters on C can be affected by the other mechanical parameters.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4090 ◽  
Author(s):  
Leszek Czechowski ◽  
Zbigniew Kołakowski

A study of the pre- and post-buckling state of square plates built from functionally graded materials (FGMs) and pure ceramics is presented. In contrast to the theoretical approach, the structure under consideration contains a finite number of layers with a step-variable change in mechanical properties across the thickness. An influence of ceramics content on a wall and a number of finite layers of the step-variable FGM on the buckling and post-critical state was scrutinized. The problem was solved using the finite element method and the asymptotic nonlinear Koiter’s theory. The investigations were conducted for several boundary conditions and material distributions to assess the behavior of the plate and to compare critical forces and post-critical equilibrium paths.


Forests ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 525 ◽  
Author(s):  
Nadežda Langová ◽  
Roman Réh ◽  
Rastislav Igaz ◽  
Ľuboš Krišťák ◽  
Miloš Hitka ◽  
...  

The research on population shows that the count of overweight people has been constantly growing. Therefore, designing and modifying utility items, e.g., furniture should be brought into focus. Indeed, furniture function and safety is associated with the weight of a user. Current processes and standards dealing with the design of seating furniture do not meet the requirements of overweight users. The research is aimed at designing flexible chairs consisting of lamellae using the finite element method (FEM). Three types of glued lamellae based on wood with different number of layers and thickness were made and subsequently, their mechanical properties were tested. Values for modulus of elasticity and modulus of rupture were used to determine stress and deformation applying the FEM method for modelling flexible chairs. In this research, the methodology for evaluating the ultimate state of flexible chairs used to analyse deformation and stability was defined. The analysis confirms that several designed constructions meet the requirements of actual standards (valid for the weight of a user up to 110 kg) but fail to meet the requirements for weight gain of a population.


Author(s):  
Belghoul Hakima ◽  
Madani Kouider ◽  
Merdaci Slimane ◽  
Rezgani Laid

This work consists of the study is to analysis by the finite element method the effect of the ageing of the adhesive exposed simultaneously to the temperature and water on the degradation of its mechanical properties and consequently on the transfer of loads from the plate to patch. The stress intensity factor was evaluated according to immersion time and temperature. Several parameters have been taken into consideration, namely the properties of the composite patch, temperature, water absorption, rate and length of crack, the distribution of maximum shear stresses in the adhesive and peel in the patch were also analyzed.


2017 ◽  
Vol 899 ◽  
pp. 272-277
Author(s):  
Hugo Dutra Gomes ◽  
Maria Carolina dos Santos Freitas ◽  
Luciano Pessanha Moreira ◽  
Flavia de Paula Vitoretti ◽  
Jose Adilson de Castro

The present study is primarily engaged in the implementation of the incremental stamping process in a computerized numeric control This paper presents two different approaches to this forming process, an experimental and other numerical. Experimental used by the computer numerical control to perform the printing process and performs numerical simulations of the process using the finite element method. Some parameters are analyzed in both approaches, such as product geometry effects, tool geometry, tool speed, tool path, contact conditions and mechanical properties of the materials.


2020 ◽  
Vol 557 (1) ◽  
pp. 43-57 ◽  
Author(s):  
Y. Tajitsu

We have developed a piezoelectric braided cord consisting of a conducting fiber yarn core, piezoelectric poly-l-lactic acid (PLLA) fiber yarn and a polyethylene terephthalate (PET) middle sheath, and a conducting fiber outer shield (piezoelectric PLLA braided cord). Actually, we made various types of piezoelectric PLLA braided cords using Japanese traditional braiding method called as Kumihimo-gumi in Japanese. Furthermore, by optimization based on the calculation results for each type of piezoelectric PLLA Kumihimo-gumi obtained by the finite element method (FEM), we were able to develop a new type of piezoelectric PLLA braided cord with a sensing function for complex motion (piezoelectric PLLA Kumihimo-gumi). Finally, we developed a new wearable sensor for a selfie stick which is a popular smartphone accessory, fabricated from a piezoelectric PLLA Kumihimo-gumi.


2019 ◽  
Vol 109 ◽  
pp. 00093 ◽  
Author(s):  
Olena Slashchova ◽  
Ihor Slashchov ◽  
Iryna Sapunova

The article is devoted to development of methods for geofiltration calculations with taking into account peculiarities of changes of the rock physical and mechanical properties at water saturation. Methods: mathematical modeling of geomechanical and filtration processes with the help of finite element method and laboratory and underground studies. A mathematical model was formulated for solving a problem of elasticity theory by the finite element method, which took into account peculiarities of water-saturated rocks. Pattern of stress-strain state changing in the fractured water-saturated rocks under the action of critical loads, which occurred around the preparatory roadways during their operation, were established. In order to solve the filtration problems, a bank of collected initial data on physical and mechanical properties of water-saturated rocks was processed with the help of variation coefficients, which were taken into account by the method, which assumed calculation of the model loading with critical parameters.


Sign in / Sign up

Export Citation Format

Share Document