scholarly journals Long-term remote sensing monitoring on LUCC around Chaohu Lake with new information of algal bloom and flood submerging

Author(s):  
Yi Lin ◽  
Tinghui Zhang ◽  
Qin Ye ◽  
Jianqing Cai ◽  
Chengzhao Wu ◽  
...  
2018 ◽  
Vol 7 (12) ◽  
pp. 466 ◽  
Author(s):  
Jing Li ◽  
Ronghua Ma ◽  
Kun Xue ◽  
Yuchao Zhang ◽  
Steven Loiselle

Column integrated algal biomass provides a robust indicator for eutrophication evaluation because it considers the vertical variability of phytoplankton. However, most remote sensing-based inversion algorithms of column algal biomass assume a homogenous distribution of phytoplankton within the water column. This study proposes a new remote sensing-based algorithm to estimate column integrated algal biomass incorporating different possible vertical profiles. The field sampling was based on five surveys in Lake Chaohu, a large eutrophic shallow lake in China. Field measurements revealed a significant variation in phytoplankton profiles in the water column during algal bloom conditions. The column integrated algal biomass retrieval algorithm developed in the present study is shown to effectively describe the vertical variation of algal biomass in shallow eutrophic water. The Baseline Normalized Difference Bloom Index (BNDBI) was adopted to estimate algal biomass integrated from the water surface to 40 cm. Then the relationship between 40 cm integrated algal biomass and the whole column algal biomass at various depths was built taking into consideration the hydrological and bathymetry data of each site. The algorithm was able to accurately estimate integrated algal biomass with R2 = 0.89, RMSE = 45.94 and URMSE = 28.58%. High accuracy was observed in the temporal consistency of satellite images (with the maximum MAPE = 7.41%). Sensitivity analysis demonstrated that the estimated algal biomass integrated from the water surface to 40 cm has the greatest influence on the estimated column integrated algal biomass. This algorithm can be used to explore the long-term variation of algal biomass to improve long-term analysis and management of eutrophic lakes.


2021 ◽  
Vol 594 ◽  
pp. 125970
Author(s):  
Jiaqi Chen ◽  
Jian Wang ◽  
Qingwei Wang ◽  
Jiming Lv ◽  
Xiangmei Liu ◽  
...  

2011 ◽  
Vol 13 (5) ◽  
pp. 679-686
Author(s):  
Zhiqi QIAN ◽  
Youjing ZHANG ◽  
Shizan DENG ◽  
Yingying FANG ◽  
Chen CHEN

Author(s):  
V. M. Artyushenko ◽  
D. Y. Vinogradov

The article deals with the issues related to the problem of ballistic design of the space system of remote sensing of the Earth on stable near-circular solar-synchronous orbits with long-term existence of spacecraft. We propose a rational method of maintaining a solar-synchronous orbit in given light conditions with prolonged active lifetime of space systems. In solving this problem, the total time of normal operation of the system for a given period of operation, during which the most favorable conditions for the use of spacecraft are provided on the main parts of orbits, is taken as a target function.


2007 ◽  
Author(s):  
Klaus Schäfer ◽  
Gregor Schürmann ◽  
Carsten Jahn ◽  
Candy Matuse ◽  
Herbert Hoffmann ◽  
...  

2021 ◽  
Vol 13 (11) ◽  
pp. 2131
Author(s):  
Jamon Van Den Hoek ◽  
Alexander C. Smith ◽  
Kaspar Hurni ◽  
Sumeet Saksena ◽  
Jefferson Fox

Accurate remote sensing of mountainous forest cover change is important for myriad social and ecological reasons, but is challenged by topographic and illumination conditions that can affect detection of forests. Several topographic illumination correction (TIC) approaches have been developed to mitigate these effects, but existing research has focused mostly on whether TIC improves forest cover classification accuracy and has usually found only marginal gains. However, the beneficial effects of TIC may go well beyond accuracy since TIC promises to improve detection of low illuminated forest cover and thereby normalize measurements of the amount, geographic distribution, and rate of forest cover change regardless of illumination. To assess the effects of TIC on the extent and geographic distribution of forest cover change, in addition to classification accuracy, we mapped forest cover across mountainous Nepal using a 25-year (1992–2016) gap-filled Landsat time series in two ways—with and without TIC (i.e., nonTIC)—and classified annual forest cover using a Random Forest classifier. We found that TIC modestly increased classifier accuracy and produced more conservative estimates of net forest cover change across Nepal (−5.2% from 1992–2016) TIC. TIC also resulted in a more even distribution of forest cover gain across Nepal with 3–5% more net gain and 4–6% more regenerated forest in the least illuminated regions. These results show that TIC helped to normalize forest cover change across varying illumination conditions with particular benefits for detecting mountainous forest cover gain. We encourage the use of TIC for satellite remote sensing detection of long-term mountainous forest cover change.


Sign in / Sign up

Export Citation Format

Share Document