scholarly journals Effect of hydrogen in argon shielding gas for welding stainless steel grade SUS 201 by GTA welding process

2020 ◽  
Vol 1 ◽  
pp. 100016
Author(s):  
Wichan Chuaiphan ◽  
Loeshpahn Srijaroenpramong
2011 ◽  
Vol 295-297 ◽  
pp. 1919-1924 ◽  
Author(s):  
Kuang Hung Tseng ◽  
Kai Chieh Hsien

The aim of the present work was to investigate the effects of specific nitrogen gas additions to argon shielding gas on morphology and microstructure of austenitic stainless steel TIG welds. An autogenous TIG welding process was applied on type 316L stainless steel to produce a bead-on-plate weld. The ferrite content of weld metal was measured using a Feritscope. The results indicated that the arc voltage increase as the amount of nitrogen gas added to the argon atmosphere increases. The retained ferrite content of type 316L stainless steel TIG weld metal decreased rapidly as nitrogen gas addition to the argon shielding gas was increased.


2017 ◽  
Vol 2 (88) ◽  
pp. 49-58
Author(s):  
E.G. Betini ◽  
C.S. Mucsi ◽  
T.S. Luz ◽  
M.T.D. Orlando ◽  
M-N. Avettand-Fènoël ◽  
...  

Purpose: The thermal diffusivity variation of UNS S32304 duplex stainless steel welds was studied after pulsed GTA welding autogenous process without filler addition. This property was measured in the transverse section of thin plates after welding process and post-heat treated at 750°C for 8 h followed by air-cooling. Design/methodology/approach: The present work reports measurements of thermal diffusivity using the laser-flash method. The thermal cycles of welding were acquired during welding by means of k-type thermocouples in regions near the weld joint. The used shielding gas was pure argon and 98% argon plus 2% of nitrogen. The temperature profiles were obtained using a digital data acquisition system. Findings: It was found an increase of thermal diffusivity after welding process and a decrease of these values after the heat treatment regarding the solidified weld pool zone, irrespective of the welding protection atmosphere. The microstructure was characterized and an increase of austenite phase in the solidified and heat-affected zones was observed for post-weld heat-treated samples. Research limitations/implications: It suggests more investigation and new measurements about the influence of the shielding gas variation on thermal diffusivity in the heat-affected zone. Practical implications: The nuclear industry, especially, requests alloys with high thermal stability in pipes for power generation systems and safe transportation equipment’s for radioactive material. Thus, the duplex stainless steel grades have improved this stability over standard grades and potentially increase the upper service temperature reliability of the equipment. Originality/value: After heat treatment, the welded plate with 98%Ar plus 2%N2 as shielding gas presented a thermal diffusivity closer to the as received sample. By means of 2%-nitrogen addition in shielding gas during GTAW welding of duplex stainless steel may facilitate austenite phase reformation, and then promotes stability on the thermal diffusivity of duplex stainless steels alloys.


Author(s):  
Vaidyanath Rajan ◽  
Badri Narayanan ◽  
Michael Barrett ◽  
Kevin Beardsley

Abstract For pipe fabrication shops, stainless steel pipe welding typically represents 15%–20% of their business. The pipe materials fabricated in these shops are primarily austenitic stainless 304L and 316L pipe. The quality requirements in stainless pipe fabrication shops are determined by performance requirements for service applications in low temperature, high temperature or corrosive environments. To enable the performance required in these applications, codes, standards and recommended practices for welding are frequently written from a conventional GTAW or SMAW welding paradigm. In addition, for the root pass and the first fill pass made with GTAW, an inert backing gas is always recommended to minimize or eliminate the discoloration or oxidation on the ID surface of the pipe near the root pass. The use of GTAW with inert backing gas adds significant time, complexity and cost to the welding of stainless pipe. In stainless pipe shop fabrication, very few welding practices recognize or encourage the use of GMAW welding solutions for these applications, even though it is known to be a more productive and economical welding process. Moreover, the absence of a consistent and proven GMAW welding solution in terms of either no backing gas GMAW, alternative options for expensive shielding gases, implementing unique welding waveforms etc., proves to be a hindrance in the adoption of GMAW solutions for the welding of stainless pipe. In this paper, we discuss advances that have been made in producing acceptable stainless pipe welds with a 1G GMAW welding solution using an STT® waveform for the root pass and a unique “Rapid X™” waveform for fill passes with no use of backing gas. One goal of this project was to also find a shielding gas mixture to provide acceptable welds from root to cap that takes into account both welding process performance as well as fabrication of defect free welds. Six different shielding gas mixtures with varying amounts of Ar, He, CO2 and N2 were evaluated. Results indicate that STT/RAPID X™ welds made with 97%Ar/2%CO2/1%H2 provide very promising results in terms of weld appearance and other conventional metrics such as radiography, bends and tensile properties. However, assessment of the corrosion performance in comparison to welds made with conventional GTAW requires development of a better test protocol than the ASTM G48 Method A test for it to be relevant and meaningful.


2008 ◽  
Vol 580-582 ◽  
pp. 45-48 ◽  
Author(s):  
Won Bae Lee ◽  
Jeong Kil Kim ◽  
Joon Sik Park ◽  
In Su Woo ◽  
Jong Bong Lee

In this study, the toughness of 11Cr ferritic stainless steel weld was evaluated by DBTT (Ductile-Brittle-Transition-Temperature) with the interstitial elements level. DBTT of the weld increased with increasing interstitial level due to the formation of martensite phase and solidsolution strengthening. Interstitial elements level should be limited by the adoption of back shielding gas during welding process because increased C+N level detrimentally affects the toughness of ferritic stainless weld. Adoption of Ar as back shielding gas lowered N content in the weld.


2012 ◽  
Vol 710 ◽  
pp. 614-619 ◽  
Author(s):  
S.G.K. Manikandan ◽  
D. Sivakumar ◽  
M Kamaraj ◽  
K. Prasad Rao

The detrimental laves formation in fusion zone during welding of Inconel 718 is controlled with compound current pulsing technique along with helium shielding gas. Also solid solution filler wire is used to minimize the niobium segregation. Welds were produced in 2mm thick sheets by GTA welding process and subjected to the characterization techniques. The results show, refined fusion zone microstructure, reduced amount of laves phase, minimum niobium segregation and softer fusion zone in the as welded condition.


2021 ◽  
Vol 63 (1) ◽  
pp. 97-101
Author(s):  
İsmail Açar ◽  
Behçet Gülenç

Abstract The quality of welded joints depends on the most optimal welding parameters and the selection of shielding gas type. The shielding gas was selected for joining stainless steels through gas metal arc welding methods by considering properties such as chemical-metallurgical interaction of shielding gas and the molten weld metal during the welding process, heat transmission capability of the gas and cost. In this study, the effect of different shielding gas combinations on the mechanical and microstructural properties of 316 austenitic stainless steel joined by the metal inert gas (MIG) welding method was investigated. In the welding process, pure argon (100 % Ar), 98.5 % Ar + 1.5 % H2 and 95 % Ar + 5 % H2 were used as shielding gases. Tensile, hardness, and bending tests were conducted to determine mechanical properties of the welded samples. In addition, metallographic examinations were carried out to detect the macrostructural and microstructural properties of weld zones. According to the results obtained from the study, the highest tensile strength was obtained from the joints welded using 100 % Ar shielding gas. When the addition of H2 into the Ar gas increased, the tensile strength of the welded samples decreased. As a result of the tensile test, fractures occurred in the base metal in all welded samples. In all welding parameters, the hardness of the weld metal was lower as compared to the heat affected zone (HAZ) and the base metal. As a result of the bending test, crack and tearing defects were found in the weld zone.


Sign in / Sign up

Export Citation Format

Share Document