scholarly journals Effects of tensile strength on friction welding condition and weld faying surface properties of friction welded joints between pure copper and austenitic stainless steel

2020 ◽  
Vol 2 ◽  
pp. 100028 ◽  
Author(s):  
M. Kimura ◽  
K. Ohara ◽  
M. Kusaka ◽  
K. Kaizu ◽  
K. Hayashida
2014 ◽  
Vol 6 ◽  
pp. 639378 ◽  
Author(s):  
Amit Handa ◽  
Vikas Chawla

The aim of the present study was to investigate the effect of axial pressures on the mechanical properties of friction welded AISI 304 with AISI 1021 steels, produced by mechanical joining. In the present study, an experimental setup was designed in order to accomplish friction welded joints between austenitic stainless steel and low alloy steel. Samples were welded under different axial pressures, at a constant speed of 800 rpm. The tensile strength, impact strength, and microhardness values of the welded joints were determined and evaluated and on the basis of the results obtained from the experimentation, the graphs were plotted.


2014 ◽  
Vol 10 (2) ◽  
pp. 250-264 ◽  
Author(s):  
K. Balamurugan ◽  
A.P. Abhilash ◽  
P. Sathiya ◽  
A. Naveen Sait

Purpose – Friction welding (FW) is a solid state joining process. Super austenitic stainless steel is the preferable material for high corrosion resistance requirements. These steels are relatively cheaper than austenitic stainless steel and it is expensive than nickel base super alloys for such applications. The purpose of this paper is to deal with the optimization of the FW parameters of super austenitic stainless steel using artificial neural network (ANN) simulation and particle swarm optimization (PSO). Design/methodology/approach – The FW experiments were conducted based on Taguchi L-18 orthogonal array. In FW, rotational speed, friction pressure, upsetting pressure and burn-off length are the important parameters which determine the strength of the weld joints. The FW trials were carried out on a FW machine and the welding time was recorded for each welding trial from the computerized control unit of the welding machine. The left partially deformed zone (L.PDZ) and right partially deformed zone (R.PDZ) were identified from the macrostructure and their values are considered for the output variables. The tensile test was carried out, and the yield strength and tensile strength of the joints were determined and their fracture surfaces were analyzed through scanning electron microscope (SEM). Findings – The tensile test was carried out, and the yield strength and tensile strength of the joints were determined and their fracture surfaces were analyzed through SEM. An ANN was designed to predict the weld time, L.PDZ, R.PDZ and tensile strength of the joints accurately with respect to the corresponding input parameters. Finally, the FW parameters were optimized using PSO technique. Research limitations/implications – There is no limitations, difficult weld by fusion welding process material can easily weld by FW process. Originality/value – The research work described in the paper is original.


Author(s):  
G. Fourlaris ◽  
T. Gladman

Stainless steels have widespread applications due to their good corrosion resistance, but for certain types of large naval constructions, other requirements are imposed such as high strength and toughness , and modified magnetic characteristics.The magnetic characteristics of a 302 type metastable austenitic stainless steel has been assessed after various cold rolling treatments designed to increase strength by strain inducement of martensite. A grade 817M40 low alloy medium carbon steel was used as a reference material.The metastable austenitic stainless steel after solution treatment possesses a fully austenitic microstructure. However its tensile strength , in the solution treated condition , is low.Cold rolling results in the strain induced transformation to α’- martensite in austenitic matrix and enhances the tensile strength. However , α’-martensite is ferromagnetic , and its introduction to an otherwise fully paramagnetic matrix alters the magnetic response of the material. An example of the mixed martensitic-retained austenitic microstructure obtained after the cold rolling experiment is provided in the SEM micrograph of Figure 1.


2014 ◽  
Vol 2 (1) ◽  
pp. 59-76
Author(s):  
Abdullah Daie'e Assi

This research deals with the choice of the suitable filler metal to weld the similar and dissimilar metals (Low carbon steel type A516 & Austenitic stainless steel type 316L) under constant conditions such as, plate thickness (6 mm), voltage (78 v), current (120 A), straight polarity. This research deals with three major parts. The first parts Four types of electrodes were used for welding of dissimilar metals (C.St A516 And St.St 316L) two from mild steel (E7018, E6013) and other two from austenitic stainless steel (E309L, E308L) various inspection were carried out include (Visual T., X-ray T., δ- Ferrite phase T., and Microstructures T.) and mechanical testing include (tensile T., bending T. and micro hardness T.) The second parts done by used the same parameters to welding similar metals from (C.St A516) Or (St.St 316L). The third parts deals with welding of dissimilar weldments (C.St And St.St) by two processes, gas tungsten are welding (GTAW) and shielded metal are welding (SMAW).        The results indicated that the spread of carbon from low carbon steel to the welding zone in the case of welding stainless steel elect pole (E309L) led to Configuration Carbides and then high hardness the link to high values ​​compared with the base metal. In most similar weldments showed hardness of the welding area is  higher than the hardness of the base metal. The electrode (E309L) is the most suitable to welding dissimilar metals from (C.St A516 With St.St 316L). The results also showed that the method of welding (GTAW) were better than the method of welding (SMAW) in dissimilar welded joints (St.St 316L with C.St A516) in terms of irregular shape and integrity of the welding defects, as well as characterized this weldments the high-lift and resistance ductility good when using the welding conditions are similar.


Sign in / Sign up

Export Citation Format

Share Document