Effect of heat treatment on the phase evolution and mechanical properties of atomized AlCoCrFeNi high-entropy alloy powders

2019 ◽  
Vol 803 ◽  
pp. 484-490 ◽  
Author(s):  
Jui-Ting Liang ◽  
Kuei-Chung Cheng ◽  
Shih-Hsun Chen
2020 ◽  
Vol 1 (2) ◽  
Author(s):  
Lajie WANG ◽  
Jiao XIONG ◽  
Jun LIU ◽  
X J YANG

The semi-solid slurries of the CoCrCuFeNi high entropy alloy (HEA) were fabricated through the recrystallization and partial melting (RAP) process by cold-rolling and partial remelting. The temperature range of the semi-solid region and the relationship between the liquid fraction and the temperature were determined by the differential scanning calorimetry (DSC) curve. The effect of isothermal temperature and holding time on the evolution of the microstructure and mechanical properties of the rolled samples was analyzed. The results show that the microstructure was significantly deformed, and the tensile strength has been increased by 107% after 63% rolling deformation of the CoCrCuFeNi high entropy alloy (HEA). The high-entropy alloy after cold rolling was maintained at 1150 and 1300 ° C for 20, 30, 60, and 120 minutes respectively, the plasticity has been improved compared with the rolled high entropy alloy. The optimal plasticity was reached 13.7% and 7.9% at 1150 ℃ and 1300℃ for 30 minutes, respectively. After semi-solid isothermal heat treatment, the grain morphology changed from dendritic of as-cast or rolled to spherulite and the grain size increased significantly with time and the holding temperature increased.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Gulhan Cakmak

The present paper reports the synthesis of AlCoCuFeMnNi high entropy alloy (HEA) with arc melting process. The as-cast alloy was heat treated at 900°C for 8 hours to investigate the effect of heat treatment on the structure and properties. Microstructural and mechanical properties of the alloy were analyzed together with the detailed phase analysis of the samples. The initially as-cast sample was composed of two separate phases with BCC and FCC structures having lattice parameters of 2.901 Å and 3.651 Å, respectively. The heat-treated alloy displays microsized rod-shaped precipitates both in the matrix and within the second phase. Rietveld refinement has shown that the structure was having three phases with lattice parameters of 2.901 Å (BCC), 3.605 Å (FCC1), and 3.667 Å (FCC2). The resulting phases and distribution of phases were also confirmed with the TEM methods. The alloys were characterized mechanically with the compression and hardness tests. The yield strength, compressive strength, and Vickers hardness of the as-cast alloy are 1317 ± 34 MPa, 1833 ± 45 MPa, and 448 ± 25 Hv, respectively. Heat treatment decreases the hardness values to 419 ± 26 Hv. The maximum compressive stress of the alloy increased to 2123 + 41 MPa while yield strength decreased to 1095 ± 45 with the treatment.


Nanoscale ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 3965-3976 ◽  
Author(s):  
Gang Qin ◽  
Ruirun Chen ◽  
Peter K. Liaw ◽  
Yanfei Gao ◽  
Liang Wang ◽  
...  

High-entropy alloys (HEAs) with good ductility and high strength are usually prepared by a combination of forging and heat-treatment processes.


Sign in / Sign up

Export Citation Format

Share Document