Thermal stability of phase-separated nanograin structure during heat treatment

2021 ◽  
Vol 875 ◽  
pp. 160055
Author(s):  
Hua Guo ◽  
Fawei Tang ◽  
Yong Liu ◽  
Zhi Zhao ◽  
Hao Lu ◽  
...  
2018 ◽  
Vol 385 ◽  
pp. 355-358 ◽  
Author(s):  
Sergey Mironov ◽  
Sergey Malopheyev ◽  
Igor Vysotskiy ◽  
Daria Zhemchuzhnikova ◽  
Rustam Kaibyshev

In this work, the effect of pre-strain cold rolling on thermal stability of friction-stir welded AA6061-T6 alloy was studied. The pre-strain rolling was found to be very effective in suppression of abnormal grain growth during standard post-weld T6 heat treatment. It was also shown that the efficiency of this approach essentially depends on rolling path and the rolling along welding direction was the most effective rolling schedule.


1999 ◽  
Vol 14 (5) ◽  
pp. 1760-1770 ◽  
Author(s):  
H. G. Jiang ◽  
H. M. Hu ◽  
E. J. Lavernia

The synthesis of nanocrystalline Fe, Fe–4 wt% Al, and Fe–10 wt% Al solid solutions by SPEX ball milling has been studied. The microstructural evolution during ball milling, as well as subsequent heat treatment, has been characterized. The results demonstrate that ball milling promotes the formation of αFe–4 wt% Al and αFe–10 wt% Al solid solutions by reducing the activation energy of these alloys and generating thermal energy during this process. For Fe–10 wt% Al powders milled for various time intervals up to approximately 20 min, the FeAl intermetallic compound is formed. For alloys annealed at temperatures ranging from 600 to 1000 °C, the addition of 10 wt% Al to Fe significantly enhances the thermal stability of the nanocrystalline Fe–Al alloys. Interestingly, the addition of Al within the range of 4–10 wt% seems to have little effect on the thermal stability of these alloys annealed under the same conditions. Also, the thermal stability improves for alloys milled in air as opposed to those processed using Ar.


2012 ◽  
Vol 2012 ◽  
pp. 1-4 ◽  
Author(s):  
A. A. Lukin ◽  
E. I. Il'yashenko ◽  
A. T. Skjeltorp ◽  
G. Helgesen

The present work investigates the influence of Pr, Al, Cu, B and Ho which were introduced into the Co-containing sintered magnets of Nd-Dy-Tb-Fe-Co-B type on the magnetic parameters (α, Hci, Br, BHmax⁡). The effect of heat treatment parameters on magnetic properties was also studied. It was revealed that the essential alloying of NdFeB magnets by such elements as Dy, Tb, Ho, Co as well as by boron-forming elements, for example, by titanium, may lead to reducing of F-phase quantity, and, as a consequence, to decreasing of magnetic parameters. It was also shown that additional doping of such alloys by Pr, B, Al and Cu leads to a significant increase of the quantity of F-phase in magnets as well as solubility of the Dy, Tb, Ho and Co in it. This promotes the increase of magnetic parameters. It was possible to attain the following properties for the magnets (Nd0,15Pr0,35Tb0,25Ho0,25)15(Fe0,71Co0,29)bal ⋅ Al0,9Cu0,1B8,5 (at. %) after optimal thermal treatment {1175 K (3,6–7,2 ks) with slow (12–16 ks) cooling to 675 K and subsequently remaining at T=775 K for 3,6 ks—hardening}: Br=0,88 T, Hci=1760 kA/m, BHmax⁡=144 kJ/m3, α<|0,01|%/K in the temperature interval 223–323 K.


Author(s):  
Lijie Qu ◽  
Zhenyu Wang ◽  
Jing Qian ◽  
Zhengbin He ◽  
Songlin Yi

Abstract Acidic aluminum sulfate hydrolysis solutions can be used to catalyze the thermal degradation of wood in a mild temperature environment, and thus reduce the temperature required for heat treatment process. To improve the dimensional and thermal stability of Chinese fir during heat treatment at 120 °C, 140 °C and 160 °C, this study investigated the effects of soaking pretreatment with 5%, 10% and 15% aluminum sulfate on the chemical and structural changes of the heat-treated Chinese fir. The results indicated that the samples treated at 15% aluminum sulfate concentration and 160 °C heat treatment achieved the best dimensional and thermal stability. Chemical analyses by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) indicated that the catalysis of aluminum sulfate resulted in degradation of hemicelluloses during the heat treatment, and an increase in the soaking concentration and heat treatment temperature also affected the thermal degradation of celluloses. The scanning electron microscope (SEM) and mass changes test results proved that the hydrolyzed aluminum flocs mainly adhered to the inner wall of the wood tracheid as spherical precipitates, and when the soaking concentration reached 10% and 15%, a uniform soaking effect could be achieved. The thermogravimetric (TG) analysis revealed the soaking pretreatment effectively improved the thermal stability of the heat-treated wood by physically wrapping and promoting the formation of a carbon layer on the wood surface during heat treatment. Thus, aluminum sulfate soaking pretreatment exerted a great effect on the dimensional and thermal stability of wood, allowing heat treatment to be performed at a lower temperature.


2016 ◽  
Vol 877 ◽  
pp. 281-289 ◽  
Author(s):  
Hiroki Tanaka ◽  
Yasunori Nagai

Thermal stability of substructures in 6000 series aluminum alloys containing Mn and Zr elements was investigated using plane-strain compression test. In order to form thermally stabilized substructures, the deformation parameters should be selected so as to correlate with kinetic precipitation during the deformation. For substructures of the alloys containing Mn and Zr elements, the substructures were stable during the heat treatment at 540 ̊C when the alloys were deformed at a temperature above 350 ̊C. The sheets rolled above 350 ̊C at a strain rate of under 3 s-1 per pass showed the fibrous structure and well developed β-fiber textures after the heat treatment at 540 ̊C. The sheets with the fibrous structure had an average Lankford value larger than one.


2000 ◽  
Vol 622 ◽  
Author(s):  
Jacek Jasiński ◽  
Eliana Kamińska ◽  
Anna Piotrowska ◽  
Adam Barcz ◽  
Marcin Zieliński

ABSTRACTMicrostructure and thermal stability of ZrN/ZrB2 bilayer deposited on GaN have been studied using transmission electron microscopy methods (TEM) and secondary ion mass spectrometry (SIMS). It has been demonstrated that annealing of the contact structure at 1100°C in N2 atmosphere does not lead to any observable metal/semiconductor interaction. In contrast, a failure of the integrity of ZrN/ZrB2 metallization at 800°C, when the heat treatment is performed in O2 ambient has been observed.


1966 ◽  
Vol 101 (3) ◽  
pp. 721-726 ◽  
Author(s):  
SJ Martin

1. RNA has been prepared from baby hamster kidney cells by extraction with a phenol-EDTA mixture and further purified by passing through a column of Sephadex G-25 that had been equilibrated with water. 2. Aging of the total RNA extracts at 4 degrees or heating at 95 degrees followed by rapid cooling caused a conversion of 28s RNA into material sedimenting in sucrose gradients at approx. 18s. 3. When heated RNA was re-extracted with phenol the sedimentation profile was not returned to that of the unheated RNA. 4. The 28s and 18s RNA fractions were collected separately from sucrose gradients by precipitation with 2vol. of ethanol and passed through a Sephadex G-25 column equilibrated with water. 5. Heat treatment of purified 28s RNA at 95 degrees caused the sedimentation coefficient to increase to approx. 40s, whereas similar treatment of 18s RNA caused no significant increase. If the RNA was heated before the Sephadex G-25 treatment the sedimentation coefficient of the 28s and 18s RNA decreased to approx. 12s and 8s. 6. Heating mixtures of purified 28s and 18s RNA at 95 degrees caused some aggregation of 18s material with the 28s fraction.


2010 ◽  
Vol 52 (7-8) ◽  
pp. 376-381
Author(s):  
O. S. Kashapov ◽  
T. V. Pavlova ◽  
N. A. Nochovnaya

Author(s):  
Владимир Михайлович Скачков ◽  
Лилия Александровна Пасечник ◽  
Сергей Павлович Яценко

В статье обсуждается возможность регулирования свойств диффузионнотвердеющего припоя (ДТП) на основе легкоплавкого сплава галлий-олово и твердой компоненты состоящей из порошка сплава медь-олово посредством введения инертного порошка металлического молибдена и термической обработки. Оценена микротвердость и термическая устойчивость композиционных диффузионнотвердеющих припоев. Показано, что повторная термическая обработка при высоких температурах способствует переходу припоя в равновесное состояние, при этом происходит резкое увеличение твердости, почти на порядок. Подтверждено, что инертные наполнители снижают механическую прочность относительно начального диффузионно-твердеющего припоя, даже те, которые хорошо смачиваются галлием, однако существует некий диапазон, содержащий определенное количество инертного компонента, у порошка молибдена это 15 %, при котором микротвердость композиционного припоя выходит на максимум. The article discusses the possibility of regulating the properties of a diffusion-hardening solder based on a low-melting gallium-tin alloy and a solid component consisting of a copper-tin alloy powder by introducing an inert metal molybdenum powder and heat treatment. The microhardness and thermal stability of composite diffusion-hardening solders were evaluated. It is shown that repeated heat treatment at high temperatures contributes to the transition of the solder to an equilibrium state, with a sharp increase in hardness, almost by an order of magnitude. It is confirmed that inert fillers reduce the mechanical strength relative to the initial diffusion-hardening solder, even those that are well wetted with gallium, but there is a certain range containing a certain amount of the inert component, for molybdenum powder it is 15 %, at which the microhardness of the composite solder reaches the maximum.


Sign in / Sign up

Export Citation Format

Share Document