Influence of Al particles as infiltration promoters on the interfacial reaction and mechanical property of a continuous SiC fiber/AZ91 composite fabricated by a low-pressure infiltration method

2021 ◽  
pp. 161461
Author(s):  
Masataka Yamamoto ◽  
Yasuhisa Nishimura ◽  
Masamitsu Hayashida
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yongbum Choi ◽  
Xuan Meng ◽  
Zhefeng Xu

AbstractThe conventional manufacturing process of fiber-reinforced metal matrix composites via liquid infiltration processes, preform manufacturing using inorganic binders is essential. However, the procedure involves binder sintering, which requires high energy and long operating times. A new fabrication process without preform manufacturing is proposed to fabricate short carbon fiber (SCF)-reinforced aluminum matrix composites using a low-pressure infiltration method. To improve the wettability between fiber and matrix, fibers were plated copper using an electroless plating process. The low-pressure infiltration method with preformless succeeded in manufacturing a composite with a volume fraction of about 30% of carbon fibers.The fiber orientation of the composite material manufactured without preform and the fiber orientation of the composite material manufactured using an inorganic binder was almost the same. The manufactured composites with preformless have high hardness and high thermal conductivity.


2010 ◽  
Vol 654-656 ◽  
pp. 2692-2695 ◽  
Author(s):  
Gen Sasaki ◽  
Yoshimasa Hara ◽  
Zhe Feng Xu ◽  
Kenji Sugio ◽  
Hiroshi Fukushima ◽  
...  

In this study, the fabrication of carbon containing aluminum composites was attempted by using low-pressure infiltration method. At first, porous preform containing vapor grown nano-fiber (VGCF) and pure aluminum powder was fabricated by spark plasma sintering (SPS) method. Porosity in preform was controlled by changing the applied pressure during plasma sintering. Consequently, the porous preform with 40-50vol% in porosity was obtained, which has enough compression strength for low-pressure infiltration (<1MPa). Then, the molten pure aluminum infiltrated to porous preform with 0.4MPa in applied pressure at 1023K, and consequently we can obtain the composite with 62-86% in density. The electrical and thermal conductivity of composites was affected by the porosity, strongly.


2011 ◽  
Vol 275 ◽  
pp. 251-254
Author(s):  
Hua Wei Rong ◽  
Cheol Hong Park ◽  
Won Jo Park ◽  
Han Ki Yoon

With the rapid development of aerospace and automobile industries, metal matrix composites (MMCs) have attracted much attention because of its excellent performance. In this paper, Ni-Cr/AC8A composites reinforced with porous Ni-Cr preform were manufactured by low pressure infiltration process, infiltration temperatures are 700oC~850oC. The microstructure and phase composition of composites were evaluated using optical microscope, X-ray diffraction (XRD) and electro-probe microanalysis (EPMA), It's found that they're intermetallic compounds generated in the composites. Recently, intermetallic compounds have attracted much attention as high-temperature material. We study the hardness of Ni-Cr/AC8A composites, the results show the Ni-Cr/AC8A composite has high hardness due to the intermetallic compounds exist.


2021 ◽  
Vol 143 (11) ◽  
Author(s):  
Safa Polat ◽  
Yavuz Sun ◽  
Engin C¸evik

Abstract In this study, it was aimed to investigate the effects of reinforcements used for improving the thermal properties of AA6061 alloy on wear resistance. For this purpose, AA6061 matrix composites were produced by pressure infiltration method using ceramic microparticles (TiB2 and B4C) and graphene nanoparticles (GNPs). The produced composites were first characterized by porosity measurement, X-ray diffraction (XRD), and scanning electron microscopy (SEM) analysis. Then, the wear behavior was examined under three different loads (20–40–60 N) with the reciprocating ball on the flat method in a dry environment. Specific wear-rates were calculated according to the Archard principle by measuring the depth and width of the traces after tests with a profilometer. Wearing mechanisms were determined with the help of optical and microstructure images. According to the obtained results, it was found that B4C + GNPs reinforced samples were more resistant to abrasion at low loads, but TiB2 + GNPs reinforced samples were higher at higher loads.


2014 ◽  
Vol 50 ◽  
pp. 14-19 ◽  
Author(s):  
W. Zhang ◽  
Y.Q. Yang ◽  
G.M. Zhao ◽  
Z.Q. Feng ◽  
B. Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document