Cardiac Peroxisome Proliferator-activated Receptor-γ (PPAR-γ) and PPAR-β Activity Is Up-Regulated in the Absence of Muscle RING Finger-2 (MuRF2) and MuRF3, Respectively, and Exaggerates High-Fat Diet-induced Cardiomyopathy

2014 ◽  
Vol 219 (3) ◽  
pp. S33-S34
Author(s):  
Megan T. Quintana ◽  
Jun He ◽  
William E. Stansfield ◽  
Monte S. Willis
2018 ◽  
Vol 96 (5) ◽  
pp. 485-497 ◽  
Author(s):  
Samah M. Elaidy ◽  
Mona A. Hussain ◽  
Mohamed K. El-Kherbetawy

Targeting peroxisome proliferator-activated receptor-gamma (PPAR-γ) is an approved strategy in facing insulin resistance (IR) for diabetes mellitus (DM) type 2. The PPAR-γ modulators display improvements in the insulin-sensitizing and adverse effects of the traditional thiazolidinediones. Nitazoxanide (NTZ) is proposed as a PPAR-γ receptor ligand with agonistic post-transcriptional effects. Currently, NTZ antidiabetic activities versus pioglitazone (PIO) in a high-fat diet/streptozotocin rat model of type 2 diabetes was explored. Diabetic adult male Wistar rats were treated orally with either PIO (2.7 mg·kg−1·day−1) or NTZ (200 mg·kg−1·day−1) for 14, 21, and 28 days. Body masses, fasting blood glucose, IR, lipid profiles, and liver and kidney functions of rats were assayed. Hepatic glucose metabolism and PPAR-γ protein expression levels as well as hepatic, pancreatic, muscular, and renal histopathology were evaluated. Significant time-dependent euglycemic and insulin-sensitizing effects with preservation of liver and kidney functions were offered by NTZ. Higher hepatic levels of glucose-6-phosphatase and glucose-6-phosphate dehydrogenase enzymes and PPAR-γ protein expressions were acquired by NTZ and PIO, respectively. NTZ could be considered an oral therapeutic strategy for DM type 2. Further systematic NTZ/PPAR-γ receptor subtype molecular activations are recommended. Simultaneous use of NTZ with other approved antidiabetics should be explored.


2019 ◽  
Vol 21 (1) ◽  
pp. 207 ◽  
Author(s):  
Yu-Chia Kao ◽  
Wei-Yen Wei ◽  
Kuen-Jer Tsai ◽  
Liang-Chao Wang

Although several epidemiologic and animal studies have revealed correlations between obesity and neurodegenerative disorders, such as Parkinson disease (PD), the underlying pathological mechanisms of obesity-induced PD remain unclear. Our study aimed to assess the effect of diet-induced obesity on the brain dopaminergic pathway. For five months, starting from weaning, we gave C57BL/6 mice a high-fat diet (HFD) to generate an obese mouse model and investigate whether the diet reprogrammed the midbrain dopaminergic system. Tyrosine hydroxylase staining showed that the HFD resulted in fewer dopaminergic neurons in the substantia nigra (SN), but not the striatum. It also induced neuroinflammation, with increased astrogliosis in the SN and striatum. Dendritic spine density in the SN of HFD-exposed mice decreased, which suggested that prolonged HFD altered dopaminergic neuroplasticity. All three peroxisome proliferator-activated receptor (PPAR) subtype (PPAR-α, PPAR-β/δ, PPAR-γ) levels were significantly reduced in the SN and the ventral tegmental area of HFD mice when compared to those in controls. This study showed that a prolonged HFD induced neuroinflammation, suppressed PPAR levels, caused degeneration of midbrain dopaminergic neurons, and resulted in symptoms reminiscent of human PD. To our knowledge, this is the first study documenting the effects of an HFD on PPARs in dopaminergic neurons.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Jiayao Yang ◽  
Dongqing Tao ◽  
Wei Ma ◽  
Song Liu ◽  
Yan Liao ◽  
...  

Objective. Sijunzi, Lizhong, and Fuzilizhong decoction were traditional Chinese classic formulations, which are widely used in clinical treatment, and the underlying mechanism is unclear. In this study, we aim to investigate the molecular mechanisms underlying the protective effects of Sijunzi, Lizhong, and Fuzilizhong on nonalcoholic fatty liver disease (NAFLD). Methods. Male Wistar rats were fed a high-fat diet for four weeks to induce NAFLD and were thereafter administered Sijunzi (8 g/kg/d), Lizhong (10 g/kg/d), or Fuzilizhong (10 g/kg/d) by gavage for four weeks. Hepatic damage, lipid accumulation, inflammation, autophagy, and peroxisome proliferator-activated receptor-α signaling were evaluated. Results. The high-fat diet-fed rats showed typical symptoms of NAFLD, including elevated levels of hepatic damage indicators, increased hepatic lipid deposition and fibrosis, severe liver inflammation, and prominent autophagy. Upon administration of Sijunzi, Lizhong, and Fuzilizhong, liver health was improved remarkably, along with ameliorated symptoms of NAFLD. In addition, NAFLD-suppressed peroxisome proliferator-activated receptor-α signaling was reactivated after treatment with the three types of decoctions. Conclusions. The results collectively signify the effective therapeutic and protective functions of Sijunzi, Lizhong, and Fuzilizhong against NAFLD and demonstrate the potential of Chinese herbal medication in mitigating the symptoms of liver diseases. Novelty of the Work. Traditional Chinese herbal medicine has been used for centuries to treat various diseases, but the molecular mechanisms of individual ingredients have rarely been studied. The novelty of our work lies in elucidating the specific signaling pathways involved in the control of NAFLD using three common Chinese herbal decoctions. We suggest that natural herbal formulations can be effective therapeutic agents to combat against NAFLD.


2017 ◽  
Vol 4 (11) ◽  
pp. 170917 ◽  
Author(s):  
Yanyun Pan ◽  
Dandan Zhao ◽  
Na Yu ◽  
Tian An ◽  
Jianan Miao ◽  
...  

Curcumin is an active component derived from Curcuma longa L. which is a traditional Chinese medicine that is widely used for treating metabolic diseases through regulating different molecular pathways. Here, in this study, we aimed to comprehensively investigate the effects of curcumin on glycolipid metabolism in vivo and in vitro and then determine the underlying mechanism. Male C57BL/6 J obese mice and 3T3-L1 adipocytes were used for in vivo and in vitro study, respectively. Our results demonstrated that treatment with curcumin for eight weeks decreased body weight, fat mass and serum lipid profiles. Meanwhile, it lowered fasting blood glucose and increased the insulin sensitivity in high-fat diet-induced obese mice. In addition, curcumin stimulated lipolysis and improved glycolipid metabolism through upregulating the expressions of adipose triglyceride lipase and hormone-sensitive lipase, peroxisome proliferator activated receptor γ/α (PPARγ/α) and CCAAT/enhancer binding proteinα (C/EBPα) in adipose tissue of the mice. In differentiated 3T3-L1 cells, curcumin reduced glycerol release and increased glucose uptake via upregulating PPARγ and C/EBPα. We concluded that curcumin has the potential to improve glycolipid metabolism disorders caused by obesity through regulating PPARγ signalling pathway.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Bing Song ◽  
Yao Sun ◽  
Yafen Chu ◽  
Jing Wang ◽  
Hongwei Zheng ◽  
...  

Objective. High-fat-diet- (HFD-) induced hepatic cell apoptosis is common in mice with nonalcoholic fatty liver disease (NAFLD). We aim to investigate the effect of Ginsenoside Rb1 (GRb1) on hepatocyte apoptosis. Methods. C57BL/6J mice with HFD were used to induce a liver-injured model with cell apoptosis. In addition, GRb1 was used to treat HFD-induced apoptosis in a liver with or without inhibitor of peroxisome proliferator-activated receptor γ (PPAR-γ). Results. Compared with C57BL/6J mice with common chow, there are downregulated PPAR-γ but upregulated cell apoptosis in the liver of mice with HFD. Furthermore, GRb1 elevated the hepatic PPAR-γ level and suppressed hepatocytic apoptosis. However, GW9662 abolished the effects of GRb1 on apoptosis in the liver. Conclusions. GRb1 alleviated HFD-induced apoptosis of hepatocytes of mice via PPAR-γ.


Sign in / Sign up

Export Citation Format

Share Document