scholarly journals The aminoglycoside G418 hinders de novo prion infection in cultured cells

2021 ◽  
pp. 101073
Author(s):  
Hamza Arshad ◽  
Zeel Patel ◽  
Mohadeseh Mehrabian ◽  
Matthew E.C. Bourkas ◽  
Zaid A.M. Al-Azzawi ◽  
...  
2021 ◽  
Author(s):  
Hans-Georg Sprenger ◽  
Thomas MacVicar ◽  
Amir Bahat ◽  
Kai Uwe Fiedler ◽  
Steffen Hermans ◽  
...  

AbstractCytosolic mitochondrial DNA (mtDNA) elicits a type I interferon response, but signals triggering the release of mtDNA from mitochondria remain enigmatic. Here, we show that mtDNA-dependent immune signalling via the cyclic GMP–AMP synthase‒stimulator of interferon genes‒TANK-binding kinase 1 (cGAS–STING–TBK1) pathway is under metabolic control and is induced by cellular pyrimidine deficiency. The mitochondrial protease YME1L preserves pyrimidine pools by supporting de novo nucleotide synthesis and by proteolysis of the pyrimidine nucleotide carrier SLC25A33. Deficiency of YME1L causes inflammation in mouse retinas and in cultured cells. It drives the release of mtDNA and a cGAS–STING–TBK1-dependent inflammatory response, which requires SLC25A33 and is suppressed upon replenishment of cellular pyrimidine pools. Overexpression of SLC25A33 is sufficient to induce immune signalling by mtDNA. Similarly, depletion of cytosolic nucleotides upon inhibition of de novo pyrimidine synthesis triggers mtDNA-dependent immune responses in wild-type cells. Our results thus identify mtDNA release and innate immune signalling as a metabolic response to cellular pyrimidine deficiencies.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zev N. Kronenberg ◽  
Arang Rhie ◽  
Sergey Koren ◽  
Gregory T. Concepcion ◽  
Paul Peluso ◽  
...  

AbstractHaplotype-resolved genome assemblies are important for understanding how combinations of variants impact phenotypes. To date, these assemblies have been best created with complex protocols, such as cultured cells that contain a single-haplotype (haploid) genome, single cells where haplotypes are separated, or co-sequencing of parental genomes in a trio-based approach. These approaches are impractical in most situations. To address this issue, we present FALCON-Phase, a phasing tool that uses ultra-long-range Hi-C chromatin interaction data to extend phase blocks of partially-phased diploid assembles to chromosome or scaffold scale. FALCON-Phase uses the inherent phasing information in Hi-C reads, skipping variant calling, and reduces the computational complexity of phasing. Our method is validated on three benchmark datasets generated as part of the Vertebrate Genomes Project (VGP), including human, cow, and zebra finch, for which high-quality, fully haplotype-resolved assemblies are available using the trio-based approach. FALCON-Phase is accurate without having parental data and performance is better in samples with higher heterozygosity. For cow and zebra finch the accuracy is 97% compared to 80–91% for human. FALCON-Phase is applicable to any draft assembly that contains long primary contigs and phased associate contigs.


2008 ◽  
Vol 38 (1) ◽  
pp. 98-109 ◽  
Author(s):  
Yasmine Aguib ◽  
Sabine Gilch ◽  
Carmen Krammer ◽  
Alexa Ertmer ◽  
Martin H. Groschup ◽  
...  

1982 ◽  
Vol 204 (1) ◽  
pp. 281-290 ◽  
Author(s):  
Sammye L. Newman ◽  
Joyce L. Barwick ◽  
Nabil A. Elshourbagy ◽  
Philip S. Guzelian

We have defined conditions that permit quantitative and specific measurement of the metabolism of the major phenobarbital-inducible form of cytochrome P-450 protein in primary non-proliferating monolayer cultures of adult rat hepatocytes. Isolated antibodies specifically directed against phenobarbital cytochrome P-450 are used to immunoprecipitate the cytochrome from lysates of cultured hepatocytes pulse-labelled with [3H]leucine. Phenobarbital cytochrome P-450 protein is then isolated from the immunoprecipitate by electrophoresis on polyacrylamide gradient slab gels. Specificity of the assay for phenobarbital cytochrome P-450 was established by competition experiments involving other forms of purified cytochrome P-450 as well as by testing antibodies directed against these other forms of the cytochrome. Using purified phenobarbital cytochrome P-450, radiolabelled in both its haem and apoprotein portions, as an internal standard, we demonstrated that, with this immunoassay, recovery of cytochrome P-450 from microsomal samples is nearly complete. Basal rates of synthesis of phenobarbital cytochrome P-450 representing as little as 0.02–0.05% of total cellular protein synthesis were reliably and reproducibly detected in hepatocyte culture maintained in serum-free medium for 72h. Moreover, inclusion of phenobarbital in the culture medium for 96h stimulated not only synthesis de novo of phenobarbital cytochrome P-450 protein, but also accumulation of spectrally and catalytically active cytochrome P-450. Advantages of this immunoassay are that metabolism (synthesis or degradation) of the haem or protein of this important form of the cytochrome can be measured conveniently in the small samples available from cultured cells without the necessity of preparing subcellular fractions.


Reproduction ◽  
2006 ◽  
Vol 132 (3) ◽  
pp. 423-434 ◽  
Author(s):  
G Manandhar ◽  
D Feng ◽  
Y-J Yi ◽  
L Lai ◽  
J Letko ◽  
...  

Centrin is an evolutionarily conserved 20 kDa, Ca+2-binding, calmodulin-related protein associated with centrioles and basal bodies of phylogenetically diverse eukaryotic cells. Earlier studies have shown that residual centrosomes of non-rodent mammalian spermatozoa retain centrin and, in theory, could contribute this protein for the reconstruction of the zygotic centrosome after fertilization. The present work shows that CEN2 and CEN3 mRNA were detected in germinal vesicle-stage (GV) oocytes, MII oocytes, and pre-implantation embryos from the two-cell through the blastocyst stage, but not in spermatozoa. Boar ejaculated spermatozoa possess centrin as revealed by immunofluorescence microscopy and western blotting. Immature, GV oocytes possess speckles of centrin particles in the perinuclear area, visualized by immunofluorescence microscopy and exhibit a 19 kDa band revealed by western blotting. Mature MII stage oocytes lacked centrin that could be detected by immunofluorescence or western blotting. The sperm centrin was lost in zygotes afterin vitrofertilization. It was not detectable in embryos by immunofluorescence microscopy until the late blastocyst stage. Embryonic centrin first appeared as fine speckles in the perinuclear area of some interphase blastocyst cells and as putative centrosomes of the spindle poles of dividing cells. The cells of the hatched blastocysts developed centrin spots comparable with those of the cultured cells. Some blastomeres displayed undefined curved plate-like centrin-labeled structures. Anti-centrin antibody labeled interphase centrosomes of cultured pig embryonic fibroblast cells as distinct spots in the juxtanuclear area. Enucleated pig oocytes reconstructed by electrofusion with pig fibroblasts displayed centrin of the donor cell during the early stages of nuclear decondensation but became undetectable in the late pronuclear or cleavage stages. These observations suggest that porcine zygotes and pre-blastocyst embryonic cells lack centrin and do not retain exogenously incorporated centrin. The early embryonic centrosomes function without centrin. Centrin in the blastocyst stage embryos is likely a result ofde novosynthesis at the onset of differentiation of the pluripotent blastomeres.


2007 ◽  
Vol 53 (6) ◽  
pp. 1023-1029 ◽  
Author(s):  
Sara Bremer ◽  
Helge Rootwelt ◽  
Stein Bergan

Abstract Background: Inosine monophosphate dehydrogenase (IMPDH) catalyzes the rate-limiting step in de novo guanine nucleotide synthesis and is implicated in cell cycle control. Inhibition of this enzyme is associated with immunosuppressive, antiviral, and antitumor activity. IMPDH basal activity increases after initiation of immunosuppressive therapy. Methods: A real-time reverse-transcription PCR assay was developed and validated for mRNA quantification of the 2 human IMPDH isoforms. Target gene expressions were normalized to the geometric mean of 3 housekeeping genes. Assay utility was tested by analyzing patient samples and cultured cells exposed to immunosuppressive drugs such as the IMPDH inhibitor mycophenolic acid. Results: The assay was linear over 6 logs of cDNA input and demonstrated specific quantification of IMPDH1 and IMPDH2 expression in cultured cells and patient samples. Limits of detection and quantification were 10 and 103 copies of cDNA per reaction, respectively. Within-run and total between-day CVs were <15% for normalized expression. Changes in IMPDH1 and 2 expression were observed in patient samples after initiation of an immunosuppressive regimen that included calcineurin inhibitors, mycophenolate mofetil, and steroids. Conclusions: This assay can be used to study the regulation of IMPDH expression and the involvement of the enzymes in immunological and malignant proliferative conditions. This may contribute to the processes of drug development and to the establishment of monitoring strategies for treatment effect and disease activity.


Author(s):  
Vyoma Mistry ◽  
Abhishek Sharma ◽  
Ajay Kumar Mathur

AbstractThe antineoplastic herb, Catharanthus roseus is a classified high-value low-volume medicinal herb which is in global attention of scientific research for modulation of its monoterpenoid indole alkaloids (MIA) pathway through genetic engineering. These secondary metabolites are generally stored in specific types of structures/compartments due to their cytotoxic nature and designated roles in plant defense response. However, their presence can hinder the genetic engineering process used to develop transgenic plants through de novo morphogenesis and regeneration of plants from cultured cells/tissues and hence, it always remained a critical impediment in transgenic research in C. roseus. The pre-plasmolysis treatment of leaf explants can help to tackle the recalcitrant nature of leaf explant and can support the direct regeneration response by ex-osmosis that minimizes the concentration of alkaloids. Therefore, this study was performed to chase the effect of osmotic conditions on recalcitrant leaves of C. roseus engaged in vitro plant regeneration and hypothesis of alkaloids ex-osmosis is confirmed by HPLC analysis.


Author(s):  
Suneeta Devi ◽  
Priya Tomar ◽  
Khaja Faisal Tarique ◽  
Samudrala Gourinath

Pyridoxal 5’-phosphate (PLP) functions as a cofactor for hundreds of different enzymes that are crucial to the survival of microorganisms. PLP-dependent enzymes have been extensively characterized and proposed as drug targets in Entamoeba histolytica. This pathogen is unable to synthesize vitamin B6via de-novo pathway and relies on the uptake of vitamin B6 vitamers from the host which are then phosphorylated by the enzyme pyridoxal kinase to produce PLP, the active form of vitamin B6. Previous studies from our lab shows that EhPLK is essential for the survival and growth of this protozoan parasite and its active site differs significantly with respect to its human homologue making it a potential drug target. In-silico screening of EhPLK against small molecule libraries were performed and top five ranked molecules were shortlisted on the basis of docking scores. These compounds dock into the PLP binding site of the enzyme such that binding of these compounds hinders the binding of substrate. Of these five compounds, two compounds showed inhibitory activity with IC50 values between 100-250 μM when tested in-vitro. The effect of these compounds proved to be extremely lethal for Entamoeba trophozoites in cultured cells as the growth was hampered by 91.5% and 89.5% when grown in the presence of these compounds over the period of 72 hours.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Mario Ruiz ◽  
Marcus Henricsson ◽  
Jan Borén ◽  
Marc Pilon

Abstract Background AdipoR1 and AdipoR2 (AdipoRs) are plasma membrane proteins often considered to act as adiponectin receptors with a ceramidase activity. Additionally, the AdipoRs and their yeast and C. elegans orthologs are emerging as membrane homeostasis regulators that counter membrane rigidification by promoting fatty acid desaturation and incorporation of unsaturated fatty acids into phospholipids, thus restoring fluidity. Methods Using cultured cells, the effects of AdipoR silencing or over-expression on the levels and composition of several sphingolipid classes were examined. Results AdipoR2 silencing in the presence of exogenous palmitic acid potently causes increased levels of dihydroceramides, a ceramide precursor in the de novo ceramide synthesis pathway. Conversely, AdipoR2 over-expression caused a depletion of dihydroceramides. Conclusions The results are consistent with AdipoR2 silencing leading to increased intracellular supply of palmitic acid that in turn leads to increased dihydroceramide synthesis via the rate-limiting serine palmitoyl transferase step. In agreement with this model, inhibiting the desaturase SCD or SREBF1/2 (positive regulators of SCD) also causes a strong increase in dihydroceramide levels.


Sign in / Sign up

Export Citation Format

Share Document