scholarly journals In-vivo analysis of thoracic mechanical response under belt loading: The role of body mass index in thorax stiffness

2013 ◽  
Vol 46 (5) ◽  
pp. 883-889 ◽  
Author(s):  
David Poulard ◽  
François Bermond ◽  
Sabine Compigne ◽  
Karine Bruyère
2020 ◽  
Vol 64 (2) ◽  
pp. 251-261
Author(s):  
Jessica E. Fellmeth ◽  
Kim S. McKim

Abstract While many of the proteins involved in the mitotic centromere and kinetochore are conserved in meiosis, they often gain a novel function due to the unique needs of homolog segregation during meiosis I (MI). CENP-C is a critical component of the centromere for kinetochore assembly in mitosis. Recent work, however, has highlighted the unique features of meiotic CENP-C. Centromere establishment and stability require CENP-C loading at the centromere for CENP-A function. Pre-meiotic loading of proteins necessary for homolog recombination as well as cohesion also rely on CENP-C, as do the main scaffolding components of the kinetochore. Much of this work relies on new technologies that enable in vivo analysis of meiosis like never before. Here, we strive to highlight the unique role of this highly conserved centromere protein that loads on to centromeres prior to M-phase onset, but continues to perform critical functions through chromosome segregation. CENP-C is not merely a structural link between the centromere and the kinetochore, but also a functional one joining the processes of early prophase homolog synapsis to late metaphase kinetochore assembly and signaling.


2020 ◽  
Vol 66 (1) ◽  
pp. 71-78
Author(s):  
Lev Bershteyn ◽  
Aleksandr Ivantsov ◽  
Aglaya Ievleva ◽  
A. Venina ◽  
I. Berlev

The aim of this study was to evaluate steroid receptors’ status of tumor tissue in different molecular biological types of endometrial cancer (EC), subdivided according to the current classification, and their colonization by lymphocytic and macrophage cells, taking into account body mass index of the patients. Materials and methods: Material from treatment-naive patients with EC (total n = 229) was included; the number of sick persons varied depending on the method used. The average age of patients was close to 60 years, and about 90% of them were postmenopausal. It was possible to divide the results of the work into two main subgroups: a) depending on the molecular biological type of the tumor (determined on the basis of genetic and immunohistochemical analysis), and b) depending on the value of the body mass index (BMI). The latter approach was used in patients with EC type demonstrating a defective mismatch repair of the incorrectly paired nucleotides (MMR-D) and with a type without characteristic molecular profile signs (WCMP), but was not applied (due to the smaller number of patients) in EC types with a POLE gene mutation or with expression of the oncoprotein p53. According to the data obtained, when comparing various types of EC, the lowest values of Allred ER and PR scores were revealed for POLE-mutant and p53 types, while the “triple-negative” variant of the tumor (ER-, PR-, HER2/neu-) was most common in POLE-mutant (45.5% of cases) and WCMP (19.4%) types of EC. The p53+ type of EC is characterized by inclination to the higher expression of the macrophage marker CD68 and lymphocytic Foxp3, as well as mRNA of PD-1 and SALL4. In addition to the said above, for WCMP type of EC is peculiar, on the contrary, a decrease in the expression of lymphocytic markers CD8 (protein) and PD-L1 (mRNA). When assessing the role of BMI, its value of >30.0 (characteristic for obesity) was combined with an inclination to the increase of HER-2/neu expression in the case of MMR-D EC type and to the decrease of HER-2 /neu, FOXp3 and ER expression in WCMP type. Conclusions: The accumulated information (mainly describing here hormonal sensitivity of the tumor tissue and its lymphocytic-macrophage infiltration) additionally confirms our earlier expressed opinion that the differences between women with EC are determined by both the affiliation of the neoplasm to one or another molecular biological type (subdivided according to the contemporary classification), as well as by body mass value and (very likely) the associated hormonal and metabolic attributes.


Author(s):  
Ana P. Sehn ◽  
Anelise R. Gaya ◽  
Caroline Brand ◽  
Arieli F. Dias ◽  
Roya Kelishadi ◽  
...  

AbstractObjectivesThe combination of sleep duration, television (TV) time and body mass index (BMI) may be related to the alteration of cardiometabolic risk. However, there are few studies that use these variables grouped, and showing the moderating role of age. This study aimed to verify if the combination of sleep duration, TV time and BMI is associated with cardiometabolic risk and the moderating role of age in this relationship in youth.MethodsCross-sectional study conducted with 1411 adolescents (611 male), aged 10–17 years. Sleep duration, TV time and BMI were assessed and grouped into eight categories. Cardiometabolic risk was assessed by a continuous metabolic risk score, including the following variables: low HDL-cholesterol, elevated triglycerides, dysglycemia, high systolic blood pressure, high waist circumference and low cardiorespiratory fitness. Generalized linear models were used to test moderation of age in the relationship between the eight categories of sleep duration/television time/BMI with cardiometabolic risk.ResultsCardiometabolic risk factor showed association with all overweight or obesity independent of sleep time and TV time. Age moderated the relationship between sleep duration/television time/BMI with cardiometabolic risk. This association was stronger in younger adolescents (11 and 13 years), indicating that individuals with inadequate sleep, prolonged TV time and overweight/obesity present higher cardiometabolic risk values when compared to 15-year-old adolescents.ConclusionOverweight/obesity, independently of sleep duration and TV time, is the main risk factor for cardiometabolic disorders in adolescence. When moderated by age, younger adolescents that presented the combination of risk factors had higher cardiometabolic risk.


2010 ◽  
Vol 1274 ◽  
Author(s):  
Taher Saif ◽  
Jagannathan Rajagopalan ◽  
Alireza Tofangchi

AbstractWe used high resolution micromechanical force sensors to study the in vivo mechanical response of embryonic Drosophila neurons. Our experiments show that Drosophila axons have a rest tension of a few nN and respond to mechanical forces in a manner characteristic of viscoelastic solids. In response to fast externally applied stretch they show a linear force-deformation response and when the applied stretch is held constant the force in the axons relaxes to a steady state value over time. More importantly, when the tension in the axons is suddenly reduced by releasing the external force the neurons actively restore the tension, sometimes close to their resting value. Along with the recent findings of Siechen et al (Proc. Natl. Acad. Sci. USA 106, 12611 (2009)) showing a link between mechanical tension and synaptic plasticity, our observation of active tension regulation in neurons suggest an important role for mechanical forces in the functioning of neurons in vivo.


2013 ◽  
Vol 41 (5) ◽  
pp. 395-402 ◽  
Author(s):  
A. Altıntaş ◽  
F. H. Aşçı ◽  
A. Kin-İşler ◽  
B. Güven-Karahan ◽  
S. Kelecek ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document