Evaluation of the effects of amyloid β aggregation from seaweed extracts by a microliter-scale high-throughput screening system with a quantum dot nanoprobe

2015 ◽  
Vol 120 (1) ◽  
pp. 45-50 ◽  
Author(s):  
Toshiki Ogara ◽  
Tomohito Takahashi ◽  
Hajime Yasui ◽  
Koji Uwai ◽  
Kiyotaka Tokuraku
2013 ◽  
Vol 53 (supplement1-2) ◽  
pp. S260
Author(s):  
Toshiki Ogara ◽  
Yukako Ishigaki ◽  
Syoya Yamaguchi ◽  
Hiroyuki Tanaka ◽  
Koji Uwai ◽  
...  

PLoS ONE ◽  
2013 ◽  
Vol 8 (8) ◽  
pp. e72992 ◽  
Author(s):  
Yukako Ishigaki ◽  
Hiroyuki Tanaka ◽  
Hiroaki Akama ◽  
Toshiki Ogara ◽  
Koji Uwai ◽  
...  

Foods ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 825 ◽  
Author(s):  
Masahiro Kuragano ◽  
Wataru Yoshinari ◽  
Xuguang Lin ◽  
Keiya Shimamori ◽  
Koji Uwai ◽  
...  

The aggregation and accumulation of amyloid β (Aβ) in the brain is a trigger of pathogenesis for Alzheimer’s disease. Previously, we developed a microliter-scale high-throughput screening (MSHTS) system for Aβ42 aggregation inhibitors using quantum-dot nanoprobes. The MSHTS system is seldom influenced by contaminants in samples and is able to directly evaluate Aβ42 aggregation inhibitory activity of samples containing various compounds. In this study, to elucidate whether the MSHTS system could be applied to the evaluation of processed foods, we examined Aβ42 aggregation inhibitory activity of salad dressings, including soy sauces. We estimated the 50% effective concentration (EC50) from serial diluted dressings. Interestingly, all 19 commercial dressings tested showed Aβ42 aggregation inhibitory activity. It was suggested that EC50 differed by as much as 100 times between the dressings with the most (0.065 ± 0.020 v/v%) and least (6.737 ± 5.054 v/v%) inhibitory activity. The highest activity sample is traditional Japanese dressing, soy sauce. It is known that soy sauce is roughly classified into a heat-treated variety and a non-heat-treated variety. We demonstrated that non-heat-treated raw soy sauce exhibited higher Aβ42 aggregation inhibitory activity than heat-treated soy sauce. Herein, we propose that MSHTS system can be applied to processed foods.


2021 ◽  
Vol 22 (6) ◽  
pp. 3041
Author(s):  
Gheorghita Menghiu ◽  
Vasile Ostafe ◽  
Radivoje Prodanović ◽  
Rainer Fischer ◽  
Raluca Ostafe

Chitinases catalyze the degradation of chitin, a polymer of N-acetylglucosamine found in crustacean shells, insect cuticles, and fungal cell walls. There is great interest in the development of improved chitinases to address the environmental burden of chitin waste from the food processing industry as well as the potential medical, agricultural, and industrial uses of partially deacetylated chitin (chitosan) and its products (chito-oligosaccharides). The depolymerization of chitin can be achieved using chemical and physical treatments, but an enzymatic process would be more environmentally friendly and more sustainable. However, chitinases are slow-acting enzymes, limiting their biotechnological exploitation, although this can be overcome by molecular evolution approaches to enhance the features required for specific applications. The two main goals of this study were the development of a high-throughput screening system for chitinase activity (which could be extrapolated to other hydrolytic enzymes), and the deployment of this new method to select improved chitinase variants. We therefore cloned and expressed the Bacillus licheniformis DSM8785 chitinase A (chiA) gene in Escherichia coli BL21 (DE3) cells and generated a mutant library by error-prone PCR. We then developed a screening method based on fluorescence-activated cell sorting (FACS) using the model substrate 4-methylumbelliferyl β-d-N,N′,N″-triacetyl chitotrioside to identify improved enzymes. We prevented cross-talk between emulsion compartments caused by the hydrophobicity of 4-methylumbelliferone, the fluorescent product of the enzymatic reaction, by incorporating cyclodextrins into the aqueous phases. We also addressed the toxicity of long-term chiA expression in E. coli by limiting the reaction time. We identified 12 mutants containing 2–8 mutations per gene resulting in up to twofold higher activity than wild-type ChiA.


2006 ◽  
Vol 29 (8) ◽  
pp. 1570-1574 ◽  
Author(s):  
Yohei Mukai ◽  
Toshiki Sugita ◽  
Tomoko Yamato ◽  
Natsue Yamanada ◽  
Hiroko Shibata ◽  
...  

2018 ◽  
Vol 23 (7) ◽  
pp. 697-707 ◽  
Author(s):  
John Joslin ◽  
James Gilligan ◽  
Paul Anderson ◽  
Catherine Garcia ◽  
Orzala Sharif ◽  
...  

The goal of high-throughput screening is to enable screening of compound libraries in an automated manner to identify quality starting points for optimization. This often involves screening a large diversity of compounds in an assay that preserves a connection to the disease pathology. Phenotypic screening is a powerful tool for drug identification, in that assays can be run without prior understanding of the target and with primary cells that closely mimic the therapeutic setting. Advanced automation and high-content imaging have enabled many complex assays, but these are still relatively slow and low throughput. To address this limitation, we have developed an automated workflow that is dedicated to processing complex phenotypic assays for flow cytometry. The system can achieve a throughput of 50,000 wells per day, resulting in a fully automated platform that enables robust phenotypic drug discovery. Over the past 5 years, this screening system has been used for a variety of drug discovery programs, across many disease areas, with many molecules advancing quickly into preclinical development and into the clinic. This report will highlight a diversity of approaches that automated flow cytometry has enabled for phenotypic drug discovery.


Sign in / Sign up

Export Citation Format

Share Document