Heterologous expression of an esterase from Thermus thermophilus HB27 in Saccharomyces cerevisiae

2010 ◽  
Vol 145 (3) ◽  
pp. 226-232 ◽  
Author(s):  
Olalla López-López ◽  
Pablo Fuciños ◽  
Lorenzo Pastrana ◽  
M. Luisa Rúa ◽  
M. Esperanza Cerdán ◽  
...  
2009 ◽  
Vol 75 (8) ◽  
pp. 2304-2311 ◽  
Author(s):  
Dawid Brat ◽  
Eckhard Boles ◽  
Beate Wiedemann

ABSTRACT In industrial fermentation processes, the yeast Saccharomyces cerevisiae is commonly used for ethanol production. However, it lacks the ability to ferment pentose sugars like d-xylose and l-arabinose. Heterologous expression of a xylose isomerase (XI) would enable yeast cells to metabolize xylose. However, many attempts to express a prokaryotic XI with high activity in S. cerevisiae have failed so far. We have screened nucleic acid databases for sequences encoding putative XIs and finally were able to clone and successfully express a highly active new kind of XI from the anaerobic bacterium Clostridium phytofermentans in S. cerevisiae. Heterologous expression of this enzyme confers on the yeast cells the ability to metabolize d-xylose and to use it as the sole carbon and energy source. The new enzyme has low sequence similarities to the XIs from Piromyces sp. strain E2 and Thermus thermophilus, which were the only two XIs previously functionally expressed in S. cerevisiae. The activity and kinetic parameters of the new enzyme are comparable to those of the Piromyces XI. Importantly, the new enzyme is far less inhibited by xylitol, which accrues as a side product during xylose fermentation. Furthermore, expression of the gene could be improved by adapting its codon usage to that of the highly expressed glycolytic genes of S. cerevisiae. Expression of the bacterial XI in an industrially employed yeast strain enabled it to grow on xylose and to ferment xylose to ethanol. Thus, our findings provide an excellent starting point for further improvement of xylose fermentation in industrial yeast strains.


Genetics ◽  
1998 ◽  
Vol 149 (1) ◽  
pp. 45-56
Author(s):  
Luther Davis ◽  
JoAnne Engebrecht

Abstract The DOM34 gene of Saccharomyces cerevisiae is similar togenes found in diverse eukaryotes and archaebacteria. Analysis of dom34 strains shows that progression through the G1 phase of the cell cycle is delayed, mutant cells enter meiosis aberrantly, and their ability to form pseudohyphae is significantly diminished. RPS30A, which encodes ribosomal protein S30, was identified in a screen for high-copy suppressors of the dom34Δ growth defect. dom34Δ mutants display an altered polyribosome profile that is rescued by expression of RPS30A. Taken together, these data indicate that Dom34p functions in protein translation to promote G1 progression and differentiation. A Drosophila homolog of Dom34p, pelota, is required for the proper coordination of meiosis and spermatogenesis. Heterologous expression of pelota in dom34Δ mutants restores wild-type growth and differentiation, suggesting conservation of function between the eukaryotic members of the gene family.


2021 ◽  
pp. 2100059
Author(s):  
Harin Jung ◽  
Hua Ling ◽  
Yong Quan Tan ◽  
Nam‐Hai Chua ◽  
Wen Shan Yew ◽  
...  

2013 ◽  
Vol 97 (13) ◽  
pp. 5753-5769 ◽  
Author(s):  
Simon Carlsen ◽  
Parayil Kumaran Ajikumar ◽  
Luca Riccardo Formenti ◽  
Kang Zhou ◽  
Too Heng Phon ◽  
...  

2002 ◽  
Vol 42 (5) ◽  
pp. 252-259 ◽  
Author(s):  
Kaoru Takegawa ◽  
Sanae Tokudomi ◽  
M. Shah Alam Bhuiyan ◽  
Mitsuaki Tabuchi ◽  
Yasuko Fujita ◽  
...  

2020 ◽  
Vol 20 (3) ◽  
Author(s):  
Jorg C de Ruijter ◽  
Kiyohiko Igarashi ◽  
Merja Penttilä

ABSTRACT Processed lignocellulosic biomass is a source of mixed sugars that can be used for microbial fermentation into fuels or higher value products, like chemicals. Previously, the yeast Saccharomyces cerevisiae was engineered to utilize its cellodextrins through the heterologous expression of sugar transporters together with an intracellular expressed β-glucosidase. In this study, we screened a selection of eight (putative) cellodextrin transporters from different yeast and fungal hosts in order to extend the catalogue of available cellobiose transporters for cellobiose fermentation in S. cerevisiae. We confirmed that several in silico predicted cellodextrin transporters from Aspergillus niger were capable of transporting cellobiose with low affinity. In addition, we found a novel cellobiose transporter from the yeast Lipomyces starkeyi, encoded by the gene Ls120451. This transporter allowed efficient growth on cellobiose, while it also grew on glucose and lactose, but not cellotriose nor cellotetraose. We characterized the transporter more in-depth together with the transporter CdtG from Penicillium oxalicum. CdtG showed to be slightly more efficient in cellobiose consumption than Ls120451 at concentrations below 1.0 g/L. Ls120451 was more efficient in cellobiose consumption at higher concentrations and strains expressing this transporter grew slightly slower, but produced up to 30% more ethanol than CdtG.


Sign in / Sign up

Export Citation Format

Share Document