Improving the expression of a heterologous protein by genome shuffling in Kluyveromyces marxianus

2020 ◽  
Vol 320 ◽  
pp. 11-16 ◽  
Author(s):  
Li Wu ◽  
Mengzhu Wang ◽  
Genhan Zha ◽  
Jungang Zhou ◽  
Yao Yu ◽  
...  
BioResources ◽  
2017 ◽  
Vol 12 (1) ◽  
Author(s):  
Rumpa Jutakanoke ◽  
Vasana Tolieng ◽  
Somboon Tanasupawat ◽  
Ancharida Akaracharanya

MethodsX ◽  
2020 ◽  
Vol 7 ◽  
pp. 101138
Author(s):  
Li Wu ◽  
Mengzhu Wang ◽  
Genhan Zha ◽  
Jungang Zhou ◽  
Yao Yu ◽  
...  

2016 ◽  
Vol 100 (14) ◽  
pp. 6193-6208 ◽  
Author(s):  
Andreas K. Gombert ◽  
José Valdo Madeira ◽  
María-Esperanza Cerdán ◽  
María-Isabel González-Siso

2020 ◽  
Vol 16 (8) ◽  
pp. 1163-1169
Author(s):  
Aziz Homayouni-Rad ◽  
Aslan Azizi ◽  
Parvin Oroojzadeh ◽  
Hadi Pourjafar

Background: Yeasts play diverse roles in human life. Since ancient times, these micro organisms have been used to produce food products and beverages including bread and beer. Nowadays, the biotechnological products of yeast are some of the main components of commercial products. Objective: Some species of yeast such as Saccharomyces cerevisiae and Saccharomyces boulardii are recognized as probiotic yeast with extensive applications in the food and drug industries. However, certain species like Kluyveromyces marxianus are still not recognized as probiotic micro organisms despite their widespread industrial usage. In this study, the application of K. marxianus in preparing food and the medicinal product was reviewed in terms of its beneficial or harmful effects. Methods: Pub Med, Google Scholar, Scopus, and Science Direct databases were searched by using “Probiotics”, “Yeast”, and “Kluyveromyces marxianus”. Results: The findings suggest that K. marxianus can be recognized as a probiotic yeast species. Conclusion: It can be concluded that K. marxianus may be considered as a probiotic micro organism with a variety of commercial and medical applications.


2014 ◽  
Vol 3 (3) ◽  
pp. 244-251 ◽  
Author(s):  
Helena Culleton ◽  
Ourdia Bouzid ◽  
Vincent McKie ◽  
Ronald Vries

Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 788
Author(s):  
Hava Peretz ◽  
Ayala Lagziel ◽  
Florian Bittner ◽  
Mustafa Kabha ◽  
Meirav Shtauber-Naamati ◽  
...  

Classical xanthinuria is a rare autosomal recessive metabolic disorder caused by variants in the XDH (type I) or MOCOS (type II) genes. Thirteen Israeli kindred (five Jewish and eight Arab) and two isolated cases from Germany were studied between the years 1997 and 2013. Four and a branch of a fifth of these families were previously described. Here, we reported the demographic, clinical, molecular and biochemical characterizations of the remaining cases. Seven out of 20 affected individuals (35%) presented with xanthinuria-related symptoms of varied severity. Among the 10 distinct variants identified, six were novel: c.449G>T (p.(Cys150Phe)), c.1434G>A (p.(Trp478*)), c.1871C>G (p.(Ser624*)) and c.913del (p.(Leu305fs*1)) in the XDH gene and c.1046C>T (p.(Thr349Ileu)) and c.1771C>T (p.(Pro591Ser)) in the MOCOS gene. Heterologous protein expression studies revealed that the p.Cys150Phe variant within the Fe/S-I cluster-binding site impairs XDH biogenesis, the p.Thr349Ileu variant in the NifS-like domain of MOCOS affects protein stability and cysteine desulfurase activity, while the p.Pro591Ser and a previously described p.Arg776Cys variant in the C-terminal domain affect Molybdenum cofactor binding. Based on the results of haplotype analyses and historical genealogy findings, the potential dispersion of the identified variants is discussed. As far as we are aware, this is the largest cohort of xanthinuria cases described so far, substantially expanding the repertoire of pathogenic variants, characterizing structurally and functionally essential amino acid residues in the XDH and MOCOS proteins and addressing the population genetic aspects of classical xanthinuria.


2021 ◽  
Vol 7 (3) ◽  
pp. 179
Author(s):  
Kai P. Hussnaetter ◽  
Magnus Philipp ◽  
Kira Müntjes ◽  
Michael Feldbrügge ◽  
Kerstin Schipper

Heterologous protein production is a highly demanded biotechnological process. Secretion of the product to the culture broth is advantageous because it drastically reduces downstream processing costs. We exploit unconventional secretion for heterologous protein expression in the fungal model microorganism Ustilago maydis. Proteins of interest are fused to carrier chitinase Cts1 for export via the fragmentation zone of dividing yeast cells in a lock-type mechanism. The kinase Don3 is essential for functional assembly of the fragmentation zone and hence, for release of Cts1-fusion proteins. Here, we are first to develop regulatory systems for unconventional protein secretion using Don3 as a gatekeeper to control when export occurs. This enables uncoupling the accumulation of biomass and protein synthesis of a product of choice from its export. Regulation was successfully established at two different levels using transcriptional and post-translational induction strategies. As a proof-of-principle, we applied autoinduction based on transcriptional don3 regulation for the production and secretion of functional anti-Gfp nanobodies. The presented developments comprise tailored solutions for differentially prized products and thus constitute another important step towards a competitive protein production platform.


Fermentation ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 62
Author(s):  
Konstantins Dubencovs ◽  
Janis Liepins ◽  
Arturs Suleiko ◽  
Anastasija Suleiko ◽  
Reinis Vangravs ◽  
...  

The Kluyveromyces marxianus yeast recently has gained considerable attention due to its applicability in high-value-added product manufacturing. In order to intensify the biosynthesis rate of a target product, reaching high biomass concentrations in the reaction medium is mandatory. Fed-batch processes are an attractive and efficient way how to achieve high cell densities. However, depending on the physiology of the particular microbial strain, an optimal media composition should be used to avoid by-product synthesis and, subsequently, a decrease in overall process effi-ciency. Thus, the aim of the present study was to optimise the synthetic growth medium and feeding solution compositions (in terms of carbon, nitrogen, phosphorous, magnesium, and calcium concentrations) for high cell density K. marxianus fed‑batch cultivations. Additionally, the biomass yields from the vitamin mixture and other macro/microelements were identified. A model predictive control algorithm was successfully applied for a fed-batch cultivation control. Biomass growth and substrate consumption kinetics were compared with the mathematical model predictions. Finally, 2‑phenylethanol biosynthesis was induced and its productivity was estimated. The determined optimal macronutrient ratio for K. marxianus biomass growth was identified as C:N:P = 1:0.07:0.011. The maximal attained yeast biomass concentration was close to 70 g·L-1 and the 2-PE biosynthesis rate was 0.372 g·L−1·h−1, with a yield of 74% from 2-phenylalanine.


Sign in / Sign up

Export Citation Format

Share Document