Precise control of two-dimensional composition of proteins and nanoparticle conjugate for functional nanostructured material fabrication

2012 ◽  
Vol 378 (1) ◽  
pp. 44-50 ◽  
Author(s):  
Koichiro Uto ◽  
Kazuya Yamamoto ◽  
Naoko Kishimoto ◽  
Masahiro Muraoka ◽  
Takao Aoyagi ◽  
...  
2019 ◽  
Vol 32 (1) ◽  
pp. 55-63 ◽  
Author(s):  
Germano Ferrara ◽  
R. Inguanta ◽  
F. Vergottini ◽  
S. Piazza ◽  
C. Sunseri

2017 ◽  
Vol 23 (42) ◽  
pp. 10001-10006 ◽  
Author(s):  
Taixing Tan ◽  
Lili Yao ◽  
Huiling Liu ◽  
Chengyu Li ◽  
Cheng Wang

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Binquan Luan ◽  
Ruhong Zhou

Abstract Single-stranded DNA (ssDNA) molecules in solution typically form coiled structures, therefore stretching ssDNA is extremely crucial before applying any nanotechnology for ssDNA analysis. Recent advances in material fabrication enable the deployment of nanochannels to manipulate, stretch, sort and map double-stranded DNA (dsDNA) molecules, however nanochannels fail to stretch ssDNA molecules due to the ultra-short persistence length and the potential nonspecific-interaction-induced clogging. Given the significance of ssDNA stretching in genome analysis, here we report an ssDNA stretching platform: two dimensional in-plane heterostructure comprising graphene and hexagonal boron nitride (h-BN), and show that ssDNA can be stretched on a h-BN nanostripe sandwiched between two adjacent graphene domains (“nanochannel”). We further show that with a biasing voltage the stretched ssDNA can be electrophoretically transported along the “nanochannel”, allowing easy controls/manipulations. When being conveniently integrated with existing atomic resolution sensors, the heterostructure platform paves the way for sequencing DNA on a planar surface.


Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1010 ◽  
Author(s):  
Ghenadii Korotcenkov

The prospects of using nanostructured black phosphorus for the development of humidity sensors are considered. It was shown that black phosphorus has a set of parameters that distinguish it from other two-dimensional (2D) materials such as graphene, silicone, and dichalcogenides. At the same time, an analysis of shortcomings, limiting the use of black phosphorus as a humidity sensitive material in devices aimed for market of humidity sensors, was also conducted.


2007 ◽  
Vol 275 (1) ◽  
pp. 257-267 ◽  
Author(s):  
Naoki Ikeda ◽  
Yoshimasa Sugimoto ◽  
Yoshinori Watanabe ◽  
Nobuhiko Ozaki ◽  
Yoshiaki Takata ◽  
...  

2006 ◽  
Vol 951 ◽  
Author(s):  
Erin McLellan ◽  
Linda Gunnarsson ◽  
Tomas Rindzevicius ◽  
Mikael Kall ◽  
Shengli Zou ◽  
...  

ABSTRACTNanofabrication is one of the driving forces leading to developments in a variety of fields including microelectronics, medicine, and sensors. Precise control over nanoscale architecture is an essential aspect in relating new size-dependent material properties. Both direct write methods and natural lithography's offer a unique opportunity to fabricate “user-defined” writing of nanostructures in a wide range of materials. Electron Beam Lithography (EBL) and Nanosphere Lithography (NSL) provide the opportunity to fabricate precise nanostructures on a wide variety of substrates with a large range of materials. Using electrodynamics calculations, Schatz and coworkers have discovered one and two dimensional array structures that produce remarkably narrow plasmon resonance spectra upon irradiation with light that is polarized perpendicularly to the array axis. In order to investigate these interactions, precise control of nanoparticle orientation, size, shape and spacing is necessary. If the overall structures have excessive defects then the effect may not be seen. For the two dimensional arrays, to have the best control over array fabrication and to look at these interactions experimentally, EBL was used to construct both hexagonal arrays of circular cylinders and the Kagome lattice. The interparticle spacing in each of these structures was varied systematically. Dark field microscopy was used to look at overall sample homogeneity and collect the single particle plasmon resonance spectrum. Additionally, both dark-field and extinction spectroscopies were used to look at the bulk spectral properties of each array type and each spacing. In investigating of the two dimensional arrays, the Kagome structure was also compared to samples produced by traditional NSL to study the optical interaction of defects, domains, and overall sample uniformity on the shape and location of the plasmon resonance. This work illustrates a deeper understanding in the nature of the optical coupling in nanostructures and this knowledge can be utilized in the future to fabricate designer (tailor made) substrates for plasmonic and surface-enhanced raman applications.


2018 ◽  
Vol 848 ◽  
pp. 256-287 ◽  
Author(s):  
N. C. Hurst ◽  
J. R. Danielson ◽  
D. H. E. Dubin ◽  
C. M. Surko

The dynamics of two-dimensional (2-D) ideal fluid vortices is studied experimentally in the presence of an irrotational strain flow. Laboratory experiments are conducted using strongly magnetized pure electron plasmas, a technique which is made possible by the isomorphism between the drift–Poisson equations describing plasma dynamics transverse to the field and the 2-D Euler equations describing an ideal fluid. The electron plasma system provides an excellent opportunity to study the dynamics of a 2-D Euler fluid due to weak dissipation and weak 3-D effects, simple diagnosis and precise control. The plasma confinement apparatus used here was designed specifically to study vortex dynamics under the influence of external flow by applying boundary conditions in two dimensions. Additionally, vortex-in-cell simulations are carried out to complement the experimental results and to extend the parameter range of the studies. It is shown that the global dynamics of a quasi-flat vorticity profile is in good quantitative agreement with the theory of a piecewise-constant elliptical patch of vorticity, including the equilibria, dynamical orbits and stability properties. Deviations from the elliptical patch theory are observed for non-flat vorticity profiles; they include inviscid damping of the orbits and modified stability limits. The dependence of these phenomena on the flatness of the initial profile is discussed. The relationship of these results to other theoretical, numerical and experimental studies is also discussed.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Battulga Munkhbat ◽  
Andrew B. Yankovich ◽  
Denis G. Baranov ◽  
Ruggero Verre ◽  
Eva Olsson ◽  
...  

Abstract The ability to extract materials just a few atoms thick has led to the discoveries of graphene, monolayer transition metal dichalcogenides (TMDs), and other important two-dimensional materials. The next step in promoting the understanding and utility of flatland physics is to study the one-dimensional edges of these two-dimensional materials as well as to control the edge-plane ratio. Edges typically exhibit properties that are unique and distinctly different from those of planes and bulk. Thus, controlling the edges would allow the design of materials with combined edge-plane-bulk characteristics and tailored properties, that is, TMD metamaterials. However, the enabling technology to explore such metamaterials with high precision has not yet been developed. Here we report a facile and controllable anisotropic wet etching method that allows scalable fabrication of TMD metamaterials with atomic precision. We show that TMDs can be etched along certain crystallographic axes, such that the obtained edges are nearly atomically sharp and exclusively zigzag-terminated. This results in hexagonal nanostructures of predefined order and complexity, including few-nanometer-thin nanoribbons and nanojunctions. Thus, this method enables future studies of a broad range of TMD metamaterials through atomically precise control of the structure.


Author(s):  
Christopher M. Collier ◽  
Brandon Born ◽  
Jonathan F. Holzman

Digital microfluidic architectures have been a source of great enthusiasm for on-chip fluid applications requiring precise control and reconfigurability. Droplet-based systems operating with exceedingly small volumes (pL) can make use of digital microfluidic control systems to direct fluid motion using voltages on cascaded electrode structures. The voltage on these electrodes can be adapted via software, thus the generalized templates offered by digital microfluidic systems can be tailored for numerous end-user applications. The work presented here addresses the two major challenges for implementing these digital microfluidics systems for end-user applications: parallel addressability and reduced input voltages. The challenges are overcome through dual-phase AC voltage routing in a 16×16 digital microfluidic multiplexer using low (10 Vrms) input voltages. The first challenge, related to parallel addressability, comes about because of the generalized template for digital microfluidics, with underlying square-grid electrodes forming a two-dimensional, M×N, plane. Such a structure cannot be readily scaled up for use in single-layered highly-parallel architectures as external address lines cannot be effectively contacted to internal square electrodes lying within a 2-dimensional. With this in mind, the work here introduces multiplexing with a cross-referenced architecture having only M+N input lines. Microdroplets lie between orthogonal overlying row electrodes and underlying column electrodes, and nonlinear threshold-voltage localization is used to initiate motion of the desired microdroplet in the two-dimensional plane. Microdroplet interference (motion of undesired microdroplets) along the activated row and column is avoided, as the applied voltage initiates motion only at the overlapped electrode region (where the voltage is doubled and above-threshold). A dual-phase AC voltage control system is used to address the above bi-layered cross-referenced electrode structure and simultaneously provides a natural solution to the second, reduced voltage, challenge of practical digital microfluidic architectures. Reduced input voltages can be achieved in the digital microfluidic system through an integrated centre-tap AC transformer (a dielectric layer in the digital microfluidic multiplexer limits the current and power consumption, allowing for step-up voltage transformation). The dual-phase outputs from this voltage transformer are 180° out-of-phase, and the AC signals from these outputs are routed to the appropriate row and column electrodes to bring about above-threshold motion. Controlled switching is demonstrated in this work for input voltages below 10 Vrms. Structural and electrical design issues for this dual-phase AC digital microfluidic integrated chip are addressed in this work, and results are presented for an integrated digital microfluidic multiplexer prototype.


Sign in / Sign up

Export Citation Format

Share Document