Application challenges for the social Life Cycle Assessment of fertilizers within life cycle sustainability assessment

2014 ◽  
Vol 69 ◽  
pp. 34-48 ◽  
Author(s):  
Julia Martínez-Blanco ◽  
Annekatrin Lehmann ◽  
Pere Muñoz ◽  
Assumpció Antón ◽  
Marzia Traverso ◽  
...  
2019 ◽  
Vol 11 (20) ◽  
pp. 5635 ◽  
Author(s):  
Wang ◽  
Zhou ◽  
Li ◽  
Wei

Due to the rapid growth in the total number of vehicles in China, energy consumption and environmental pollution are serious problems. The development of electric vehicles (EVs) has become one of the important measures for solving these problems. As EVs are in a period of rapid development, sustainability research on them is conducive to the timely discovery of—and solution to—problems in the development process, but current research on the sustainability of EVs is still scarce. Based on the strategic development direction of EVs in China, battery electric vehicles (BEVs) were chosen as the research object of this study. The theory and method of the life cycle sustainability assessment (LCSA) were used to study the sustainability of BEVs. Specifically, the indicators of the life cycle assessment (LCA) were constructed, and the GaBi software was used to assess the environmental dimensions. The framework of life cycle costing (LCC) was used to assess the economic dimensions from the perspective of consumers. The indicators of the social life cycle assessment (SLCA) of stakeholders were constructed to assess the social dimension. Then, the method of the technique for order preference by similarity to ideal solution (TOPSIS) was selected for multicriteria decision-making in order to integrate the three dimensions. A specific conclusion was drawn from a comparison of BEVs and internal combustion engine vehicles (ICEVs). The study found that the life cycle sustainability of ICEVs in China was better than that of BEVs. This result might be unexpected, but there were reasons for it. Through sensitivity analysis, it was concluded that the current power structure and energy consumption in the operation phase of BEVs had a higher environmental impact, and the high cost of batteries and the government subsidy policy had a higher impact on the cost of BEVs. Corresponding suggestions are put forward at the end of the article.


2019 ◽  
Vol 11 (3) ◽  
pp. 636 ◽  
Author(s):  
Rizal Taufiq Fauzi ◽  
Patrick Lavoie ◽  
Luca Sorelli ◽  
Mohammad Davoud Heidari ◽  
Ben Amor

Sustainability decision making is a complex task for policy makers, considering the possible unseen consequences it may entail. With a broader scope covering environmental, economic, and social aspects, Life Cycle Sustainability Assessment (LCSA) is a promising holistic method to deal with that complexity. However, to date, this method is limited to the hotspot analysis of a product, service, or system, and hence only assesses direct impacts and overlooks the indirect ones (or consequences). This critical literature review aims to explore the challenges and the research gaps related to the integration of three methods in LCSA representing three pillars of sustainability: (Environmental) Life Cycle Assessment (LCA), Life Cycle Costing (LCC), and Social Life Cycle Assessment (S-LCA). The challenges and the research gaps that appear when pairing two of these tools with each other are identified and discussed, i.e., the temporal issues, different perspectives, the indirect consequences, etc. Although this study does not aim to remove the shadows in LCSA methods, critical research gaps are identified in order to be addressed in future works. More case studies are also recommended for a deeper understanding of methodological trade-offs that might happen, especially when dealing with the consequential perspective.


2019 ◽  
Vol 11 (16) ◽  
pp. 4419 ◽  
Author(s):  
Adriana Rivera-Huerta ◽  
María de la Salud Rubio Lozano ◽  
Alejandro Padilla-Rivera ◽  
Leonor Patricia Güereca

This study evaluates the social performance of monoculture (MC), intensive silvopastoral (ISP), and native silvopastoral (NSP) livestock production systems in the tropical region of southeastern Mexico through a social life cycle assessment (SCLA) approach. The methodological framework proposed by the United Nations Environmental Program/Society of Environmental Toxicology and Chemistry (UNEP/SETAC) (2009) was employed based on a scoring approach with a performance scale ranging from 1 (very poor) to 4 (outstanding). Twelve livestock ranches for calf production were evaluated using 18 impact subcategories associated with the categories “human rights”, “working conditions”, “health and safety”, “socioeconomic repercussions”, and “governance”. The stakeholders evaluated were workers, the local community, society, and value chain actors. The ranches had performance scores between 1.78 (very poor) and 2.17 (poor). The overall average performance of the ranches by production system was 1.98, 1.96, and 1.97 for the MC, ISP, and NSP systems, respectively. The statistical analysis shows that there is no significant difference in the social performance of the livestock production systems. This assessment indicates that the cattle ranches analyzed in Mexico have poor or very poor social performance. The results show that socioeconomic and political contexts exert a greater influence on the social performance of livestock production systems than does their type of technology.


2021 ◽  
Vol 26 (9) ◽  
pp. 1900-1905 ◽  
Author(s):  
Sonia Valdivia ◽  
Jana Gerta Backes ◽  
Marzia Traverso ◽  
Guido Sonnemann ◽  
Stefano Cucurachi ◽  
...  

Abstract Purpose and context This paper aims to establish principles for the increased application and use of life cycle sustainability assessment (LCSA). Sustainable development (SD) encompassing resilient economies and social stability of the global system is growingly important for decision-makers from business and governments. The “17 SDGs” emerge as a high-level shared blueprint for peace, abundance, and prosperity for people and the planet, and “sustainability” for supporting improvements of products and organizations. A “sustainability” interpretation—successful in aligning stakeholders’ understanding—subdivides the impacts according to a triple bottom line or three pillars: economic, social, and environmental impacts. These context and urgent needs inspired the LCSA framework. This entails a sustainability assessment of products and organizations in accordance with the three pillars, while adopting a life cycle perspective. Methods The Life Cycle Initiative promotes since 2011 a pragmatic LCSA framework based on the three techniques: LCSA = environmental life cycle assessment (LCA) + life cycle costing (LCC) + social life cycle assessment (S-LCA). This is the focus of the paper, while acknowledging previous developments. Identified and reviewed literature shows challenges of addressing the three pillars in the LCSA framework implementation like considering only two pillars; not being fully aligned with ISO 14040; lacking interconnectedness among the three pillars; not having clear criteria for results’ weighting nor clear results’ interpretation; and not following cause-effect chains and mechanisms leading to an endpoint. Agreement building among LCSA experts and reviewing processes strengthened the consensus on this paper. Broad support and outreach are ensured by publishing this as position paper. Results For harmonizing practical LCSA applications, easing interpretation, and increasing usefulness, consensed ten LCSA principles (10P) are established: understanding the areas of protection, alignment with ISO 14040, completeness, stakeholders’ and product utility considerations, materiality of system boundaries, transparency, consistency, explicit trade-offs’ communication, and caution when compensating impacts. Examples were provided based on a fictional plastic water bottle Conclusions In spite of increasing needs for and interest in SD and sustainability supporting tools, LCSA is at an early application stage of application. The 10P aim to promote more and better LCSA applications by ensuring alignment with ISO 14040, completeness and clear interpretation of integrated results, among others. For consolidating its use, however, more consensus-building is needed (e.g., on value-laden ethical aspects of LCSA, interdependencies and interconnectedness among the three dimensions, and harmonization and integration of the three techniques) and technical and policy recommendations for application.


Resources ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 11 ◽  
Author(s):  
Anna Maria Ferrari ◽  
Lucrezia Volpi ◽  
Martina Pini ◽  
Cristina Siligardi ◽  
Fernando Enrique García-Muiña ◽  
...  

The purpose of this paper is to determine indices of environmental, economic and social sustainability related to the Italian production of ceramic tiles in porcelain stoneware in order to contribute to the construction of a reference benchmarking useful to decision makers, designers and end users of ceramic tiles. To achieve this goal, this paper is based on the Life Cycle Sustainability Assessment (LCSA) framework that incorporates the three dimensions of sustainability with cradle-to-grave Life Cycle Assessment (LCA), Life Cycle Costing (LCC) and Social Life Cycle Assessment (S-LCA) tools. The study has shown that in the production of porcelain stoneware one of the major environmental problems, in addition to production in the strict sense, is the distribution system of the product to end users and, to a lesser extent but always significant, the process of supplying raw materials. Finally, it was highlighted that the joint use of the three impact assessment tools (LCA, LCC, S-LCA) requires further methodological work to avoid the risk of double counting of sustainability performance. This research has adopted a detailed methodological approach, both in the collection and in the processing of data, keeping the main phases of the production process separate. In this way, it has been possible to highlight that the major environmental criticalities are just beyond the “gate” of the ceramic factories, along the logistics chain. The study also proposes for the Italian ceramic sector not only indicators of environmental sustainability but also economic and social.


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1248
Author(s):  
Jana Backes ◽  
Marzia Traverso

This paper reviews actual sustainability assessments in the construction sector to define whether and how a Life Cycle Sustainability Assessment (LCSA) is applied and interpreted in this sector today. This industry has large shares in global energy (33%), raw material consumption (40%) and solid waste generation (40%). Simultaneously, it drives the economy and provides jobs. The LCSA is a method to identify environmental, social and economic impacts of products/services along their life cycles. The results of this study showed a mismatch between sectoral emissions and the number of LCSA-based impact evaluations. It was found that only 11% of papers reviewed assessed all three sustainability pillars. The economic and especially the social pillars were partly neglected. In Life Cycle Assessments (LCAs), 100% made use of Global Warming Potential (GWP) but only 30% assessed more than five indicators in total. In Life Cycle Costing (LCC), there were a variety of costs assessed. Depreciation and lifetime were mainly neglected. We found that 42% made use of Net Present Value (NPV), while over 50% assessed individual indicators. For the Social Life Cycle Assessment (S-LCA), the focus was on the production stage; even the system boundaries were defined as cradle-to-use and -grave. Future approaches are relevant but there is no need to innovate: a proposal for a LCSA approach is made.


2020 ◽  
Vol 15 (8) ◽  
pp. 1145-1156
Author(s):  
Trong Hung Dinh ◽  
Trung Hieu Dinh ◽  
Uwe Götze

A sustainable development concerning economic, environmental, and social aspects is a global need as well as challenge in general and especially regarding the selection of construction materials. However, it is assumed that the importance of sustainability criteria is different in developed and developing countries. This is relevant for the application of Life Cycle Sustainability Assessment, a method that integrates the established methods for economic, ecological, and social evaluation (Life Cycle Costing, Life Cycle Assessment, and Social Life Cycle Assessment) without explicitly including importance weightings. This paper aims to review the reality of sustainable development in construction material selection in Vietnam, a developing country. A list of 18 sustainability criteria was set up by reviewing previous studies and using a questionnaire. These criteria were ranked and used to calculate the importance of weightings based on the Analytic Hierarchy Process method and a Likert scale. The results showed that the “price of material” was ranked as the first among the sustainability criteria. It is also pointed out that 42.06, 29.96, and 27.98 are the weightings of Life Cycle Costing, Life Cycle Assessment, and Social Life Cycle Assessment results, respectively. Besides, 11 obstacles for integrating sustainability criteria into material selection were identified in the questionnaire, and 4 out of them were marked as showing “high” importance.


2021 ◽  
Vol 13 (7) ◽  
pp. 3856
Author(s):  
Rebeka Kovačič Lukman ◽  
Vasja Omahne ◽  
Damjan Krajnc

When considering the sustainability of production processes, research studies usually emphasise environmental impacts and do not adequately address economic and social impacts. Toy production is no exception when it comes to assessing sustainability. Previous research on toys has focused solely on assessing environmental aspects and neglected social and economic aspects. This paper presents a sustainability assessment of a toy using environmental life cycle assessment, life cycle costing, and social life cycle assessment. We conducted an inventory analysis and sustainability impact assessment of the toy to identify the hotspots of the system. The main environmental impacts are eutrophication, followed by terrestrial eco-toxicity, acidification, and global warming. The life cycle costing approach examined the economic aspect of the proposed design options for toys, while the social assessment of the alternative designs revealed social impacts along the product life cycle. In addition, different options based on the principles of the circular economy were analysed and proposed in terms of substitution of materials and shortening of transport distances for the toy studied.


Resources ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 158 ◽  
Author(s):  
Manuela D’Eusanio ◽  
Monica Serreli ◽  
Luigia Petti

An increasing global focus on sustainability has affected the jewellery industry by raising questions about its environmental and social impacts and ethics due to the negative impacts of gold mining. It is essential to consider the social aspects of mining activities on the socio-economic environment and the affected individuals in order to understand the sustainability of the jewellery industry in a better way. Nonetheless, this is a gap in the evaluation of the issues of jewellery in the other phases of the life cycle, observed in the literature. For these reasons, the goal of this study is to assess the social and socio-economic aspects of a piece of jewellery from the artisan’s point of view by considering the relationship between a piece of jewellery and the local community. The United National Environmental Programme/Society of Environmental Toxicology and Chemistry (UNEP/SETAC) Guidelines on Social Life-Cycle Assessment, the UNEP/SETAC Methodological Sheets and the Subcategory Assessment Method were implemented. The findings show that a piece of jewellery can play an important role in supporting the local cultural heritage by innovating the traditional product, and promoting educational activities related to the history of the product and the territory. Consequently, the local community with its historical background gives an added value to the piece of jewellery. Further research on this topic is desirable in order to improve the knowledge of this particular sector and to identify other social issues that can be involved in this product.


Sign in / Sign up

Export Citation Format

Share Document