scholarly journals Effects of production fragmentation and inter-provincial trade on spatial blue water consumption and scarcity patterns in China

2021 ◽  
pp. 130186
Author(s):  
Quanliang Ye ◽  
Ranran Wang ◽  
Joep F. Schyns ◽  
La Zhuo ◽  
Lan Yang ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fatemeh Karandish ◽  
Hamideh Nouri ◽  
Marcela Brugnach

AbstractEnding hunger and ensuring food security are among targets of 2030’s SDGs. While food trade and the embedded (virtual) water (VW) may improve food availability and accessibility for more people all year round, the sustainability and efficiency of food and VW trade needs to be revisited. In this research, we assess the sustainability and efficiency of food and VW trades under two food security scenarios for Iran, a country suffering from an escalating water crisis. These scenarios are (1) Individual Crop Food Security (ICFS), which restricts calorie fulfillment from individual crops and (2) Crop Category Food Security (CCFS), which promotes “eating local” by suggesting food substitution within the crop category. To this end, we simulate the water footprint and VW trades of 27 major crops, within 8 crop categories, in 30 provinces of Iran (2005–2015). We investigate the impacts of these two scenarios on (a) provincial food security (FSp) and exports; (b) sustainable and efficient blue water consumption, and (c) blue VW export. We then test the correlation between agro-economic and socio-environmental indicators and provincial food security. Our results show that most provinces were threatened by unsustainable and inefficient blue water consumption for crop production, particularly in the summertime. This water mismanagement results in 14.41 and 8.45 billion m3 y−1 unsustainable and inefficient blue VW exports under ICFS. “Eating local” improves the FSp value by up to 210% which lessens the unsustainable and inefficient blue VW export from hotspots. As illustrated in the graphical abstract, the FSp value strongly correlates with different agro-economic and socio-environmental indicators, but in different ways. Our findings promote “eating local” besides improving agro-economic and socio-environmental conditions to take transformative steps toward eradicating food insecurity not only in Iran but also in other countries facing water limitations.


2021 ◽  
Author(s):  
fawen li ◽  
Wenhui Yan ◽  
Yong Zhao ◽  
Rengui Jiang

Abstract Because of the shortage of water resources, the phenomenon of groundwater over-extraction is widespread in many parts of the world, which has become a hot issue to be solved. The traditional idea of water resources management only considering blue water (stream flow) can't meet the demand of sustainable utilization of water resources. Blue water accounts for less than 40% of total rainfall, while green water (evapotranspiration) accounts for more than 60% of total rainfall. In the natural environment, vegetation growth mainly depends on green water, which is often neglected. Obviously, the traditional water resources management without considering green water has obvious deficiencies, which can't really reflect the regional water consumption situation in the water resources management. And only by limiting water consumption can achieve the real water saving. In addition, the mode of water resources development and utilization has changed from "supply according to demand" to "demand according to supply". In this background, for many regions with limited water resources, it is impossible to rely on excessive water intake for development, and sustainable development of regional can only be realized by truly controlling water demand. This paper chooses Shijin Irrigation District in the North China Plain as the research area, where agricultural water consumption is high and groundwater over-extraction is serious, and ecological environment is bad. In order to alleviate this situation, comprehensive regulation of water resources based ET is necessary. Therefore, this paper focuses on the concept of ET water resources management and includes green water into water resources assessment. Based on the principle of water balance, the target ET value of crops in the study area is calculated, and the ET value is taken as the target of water resources regulation. The actual water consumption is calculated by Penman-Monteith formula, and reduction of crop water consumption is obtained according to the difference between actual ET and target ET. The reduction in crop water consumption leads to a reduction in demand for water supply, which reduces groundwater extraction. The results of this study can provide necessary technical support for solving the problem of groundwater over-extraction and realizing real water saving.


2018 ◽  
Vol 7 (4.35) ◽  
pp. 244
Author(s):  
Nurul Azmah Safie ◽  
M.A. Malek ◽  
Z. Z. Noor

Change in climate, increasing world population and industrialization have placed considerable stress on water availability at certain places. Water Footprint accounting is a reliable technique that can be used for a better water management. This study focuses on establishing a doable methodology on water footprint accounting and assessment for direct water consumption from domestic and institutional sectors located in an urbanized environment such as Klang Valley, Kuala Lumpur. It includes investigation of Water Footprint at domestic household, schools, colleges, terminals and offices in Klang Valley. The value of water consumption, water production and water pollution will be determined using Hoekstra’s approach for green water, blue water and grey water. In addition, findings from this study will be linked to two other elements namely energy and food. This link is named as Water-Energy-Food Nexus. This study will establish the quantity and criteria of Water-Energy-Food Nexus specifically tailored to domestic and institutional sectors in Klang Valley.


2008 ◽  
Vol 44 (9) ◽  
Author(s):  
Stefanie Rost ◽  
Dieter Gerten ◽  
Alberte Bondeau ◽  
Wolfgang Lucht ◽  
Janine Rohwer ◽  
...  

2018 ◽  
Vol 10 (8) ◽  
pp. 2854 ◽  
Author(s):  
Edward Spang ◽  
Bret Stevens

Given the high proportion of water consumption for agriculture, as well as the relatively common occurrence of crop losses in the field, we estimate the amount of water embedded in crops left on the farm. We are particularly interested in understanding losses associated with fruits and vegetables, having a higher level of harvesting selectivity and perishability (and thus, losses) than grain crops. We further refined the study to focus on potatoes, as they represent the largest acreage under cultivation of all fruit and vegetable crops in the U.S. We attempt to get the most complete understanding of pre-harvest and harvest loss data for potatoes by leveraging three centralized data sets collected and managed by the United States Department of Agriculture (USDA). By integrating these three distinct data sets for the five-year period 2012–2016, we are able to estimate water consumption for potato cultivation for total in-field losses by production stage and driver of loss for seven major potato-producing states (representing 77% of total U.S. potato production). Our results suggest that 3.6%–17.9% of potatoes are lost in the field with a total estimated blue water footprint of approximately 84.6 million cubic meters. We also find that the leading driver for crop loss for in-field potato production is harvest sorting and grading, accounting for 84% of total lost production at the farm. We conclude with a discussion of opportunities for improved national level data collection to provide a better understanding of in-field crop losses over time and the resource footprints of these losses.


2019 ◽  
Vol 17 ◽  
Author(s):  
Somayeh Rezaei Kalvani ◽  
Amir Hamzah Sharaai ◽  
Latifah Abd Manaf ◽  
Amir Hossein Hamidian

Evaluation of supply chain of water consumption contributes toward reducing water scarcity, as it allows for increased water productivity in the agricultural sector. Water Footprint (WF) is a powerful tool for water management; it accounts for the volume of water consumption at high spatial and temporal resolution. The objective of this research is to investigate the water footprint trend of crop production in Tehran from 2008 to 2015 and to assess blue water scarcity in the agricultural sector. Water consumption of crop production was evaluated based on the WF method. Evapotranspiration was evaluated by applying the CROPWAT model. Blue water scarcity was evaluated using the blue water footprint-to-blue water availability formula. The results demonstrate that pistachio, cotton, walnut, almond, and wheat have a large WF, amounting to 11.111 m3/kg, 4,703 m3/kg, 3,932 m3/kg, 3,217 m3/kg, and 1.817 m3/kg, respectively. Agricultural blue water scarcity amounted to 0.6 (severe water stress class) (2015–2016). Agricultural water consumption in Tehran is unsustainable since it contributes to severe blue water scarcity. Tehran should reduce agricultural water scarcity by reducing the water footprint of the agricultural sector.


2020 ◽  
Author(s):  
Hamideh Nouri ◽  
Sattar Chavoshi Borujeni ◽  
Arjen Hoekstra

<p>The world’s population residing in urban areas grew from 30% in 1950 to about 60% in 2020 and is expected to reach 68% by 2050. As urban areas continue to grow, green spaces in cities are getting ever more treasured. Most cities have adopted strategies to be greener to improve their resilience and livability. To make the best of the benefits offered by urban green spaces, healthy greenness is essential and this means additional water consumption. Water limitation usually results in drying out of green areas in summer, when benefits and services by green spaces are highly demanded (e.g. cooling effect). In the 21<sup>st</sup> century, vulnerability to water shortage is not restricted to dry regions anymore;  water scarcity in the time of need is threatening the livability of cities even in wet regions (i.e. extreme summers in Europe). In this study, we estimate for the first time, to our knowledge, the blue water consumption of urban green spaces. We measure the evapotranspiration of an urban green space using three approaches of in-situ, observational-based and remote sensing, and employ principles of water footprint. We assess the blue and green water footprint of urban greenery to maintain green areas of a city based on their water demand, not the abstracted water or irrigated water. In the case of Adelaide Parklands in Australia, the annual total water footprint is 1114mm, of which 17% consumes in spring, 42% in summer, 27% in autumn, and 14% in winter. The average blue water footprint of the Parklands calculates 0.66 m<sup>3</sup> per square meter per annum. The hot and dry summer causes a high total water footprint compared to the cold and wet winter. This study is transferable to other cities for quantification of blue water consumption of urban green spaces and their water footprint. These findings may help to guide urbanisation priorities to move toward greening cities with no extra pressure on scarce water resources.</p>


2019 ◽  
Vol 574 ◽  
pp. 242-256 ◽  
Author(s):  
Zhongwei Huang ◽  
Mohamad Hejazi ◽  
Qiuhong Tang ◽  
Chris R. Vernon ◽  
Yaling Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document