Investigations on the structure of solid lipid nanoparticles (SLN) and oil-loaded solid lipid nanoparticles by photon correlation spectroscopy, field-flow fractionation and transmission electron microscopy

2004 ◽  
Vol 95 (2) ◽  
pp. 217-227 ◽  
Author(s):  
Katja Jores ◽  
Wolfgang Mehnert ◽  
Markus Drechsler ◽  
Heike Bunjes ◽  
Christoph Johann ◽  
...  
2018 ◽  
Vol 39 (4) ◽  
pp. 79
Author(s):  
Mateus Geraldo Schiavetto ◽  
Roberto Bertholdo ◽  
Sidney José Lima Ribeiro ◽  
Younes Messaddeq

Polystyrene latex spheres were obtained by free-emulsifier polymerization of styrene. Suspension was characterized by Photon Correlation Spectroscopy (PCS) and Transmission Electron Microscopy (TEM) and were observed to be monodisperse with sizes around 463 nm. A vertical deposition method was used in order to prepare films deposited on glass slides from the spheres suspension. High-quality opal-like films were obtained and characterized by Reflectance Spectroscopy, Scanning Electron Microscopy (SEM) and Optical Microscopy.


Author(s):  
V K Verma ◽  
Ram A

 Solid lipid nanoparticles (SLNs) of piroxicam where produced by solvent emulsification diffusion method in a solvent saturated system. The SLNs where composed of tripamitin lipid, polyvinyl alcohol (PVAL) stabilizer, and solvent ethyl acetate. All the formulation were subjected to particle size analysis, zeta potential, drug entrapment efficiency, percent drug loading determination and in-vitro release studies. The SLNs formed were nano-size range with maximum entrapment efficiency. Formulation with 435nm in particle size and 85% drug entrapment was subjected to scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for surface morphology, differential scanning calorimetry (DSC) for thermal analysis and short term stability studies. SEM and TEM confirm that the SLNs are nanometric size and circular in shape. The drug release behavior from SLNs suspension exhibited biphasic pattern with an initial burst and prolong release over 24 h. 


2020 ◽  
Vol 20 (13) ◽  
pp. 1044-1052
Author(s):  
Nasrin Abbasi Gharibkandi ◽  
Sajjad Molavipordanjani ◽  
Jafar Akbari ◽  
Seyed Jalal Hosseinimehr

Background: Solid Lipid Nanoparticles (SLNs) possess unique in vivo features such as high resistivity, bioavailability, and habitation at the target site. Coating nanoparticles with polymers such as chitosan greatly affects their pharmacokinetic behavior, stability, tissue uptake, and controlled drug delivery. The aim of this study was to prepare and evaluate the biodistribution of 99mTc-labeled SLNs and chitosan modified SLNs in mice. Methods: 99mTc-oxine was prepared and utilized to radiolabel pre-papered SLNs or chitosan coated SLNs. After purification of radiolabeled SLNs (99mTc-SLNs) and radiolabeled chitosan-coated SLNs (99mTc-Chi-SLNs) using Amicon filter, they were injected into BALB/c mice to evaluate their biodistribution patterns. In addition, nanoparticles were characterized using Transmission Electron Microscopy (TEM), Fourier-transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), X-ray Powder Diffraction (XRD) and Dynamic Light Scattering (DLS). Results: 99mTc-oxine with high radiochemical purity (RCP~100%) and stability (RCP > 97% at 24 h) was used to provide 99mTc-SLNs and 99mTc-Chi-SLNs with high initial RCP (100%). TEM image and DLS data suggest 99mTc- SLNs susceptibility to aggregation. To that end, the main portion of 99mTc-SLNs radioactivity accumulates in the liver and intestines, while 99mTc-Chi-SLNs sequesters in the liver, intestines and kidneys. The blood radioactivity of 99mTc-Chi-SLNs was higher than that of 99mTc-SLNs by 7.5, 3.17 and 3.5 folds at 1, 4 and 8 h post-injection. 99mTc- Chi-SLNs uptake in the kidneys in comparison with 99mTc-SLNs was higher by 37.48, 5.84 and 11 folds at 1, 4 and 8h. Conclusion: The chitosan layer on the surface of 99mTc-Chi-SLNs reduces lipophilicity in comparison with 99mTc- SLNs. Therefore, 99mTc-Chi-SLNs are less susceptible to aggregation, which leads to their lower liver uptake and higher kidney uptake and blood concentration.


Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 768
Author(s):  
Maddalena Sguizzato ◽  
Francesca Ferrara ◽  
Supandeep Singh Hallan ◽  
Anna Baldisserotto ◽  
Markus Drechsler ◽  
...  

Mangiferin is a natural glucosyl xanthone with antioxidant and anti-inflammatory activity, making it suitable for protection against cutaneous diseases. In this study ethosomes and transethosomes were designed as topical delivery systems for mangiferin. A preformulation study was conducted using different surfactants in association with phosphatidylcholine. Vesicle dimensional distribution was monitored by photon correlation spectroscopy, while antioxidant capacity and cytotoxicity were respectively assessed by free radical scavenging analysis and MTT on HaCaT keratinocytes. Selected nanosystems were further investigated by cryogenic transmission electron microscopy, while mangiferin entrapment capacity was evaluated by ultracentrifugation and HPLC. The diffusion kinetics of mangiferin from ethosomes and transethosomes evaluated by Franz cell was faster in the case of transethosomes. The suitability of mangiferin-containing nanovesicles in the treatment of skin disorders related to pollutants was investigated, evaluating, in vitro, the antioxidant and anti-inflammatory effect of ethosomes and transethosomes on human keratinocytes exposed to cigarette smoke as an oxidative and inflammatory challenger. The ability to induce an antioxidant response (HO-1) and anti-inflammatory status (IL-6 and NF-kB) was determined by RT-PCR and immunofluorescence. The data demonstrated the effectiveness of mangiferin loaded in nanosystems to protect cells from damage. Finally, to gain insight into the keratinocytes’ uptake of ethosome and transethosome, transmission electron microscopy analyses were conducted, showing that both nanosystems were able to pass intact within the cells.


2012 ◽  
Vol 2 (1) ◽  
pp. 8 ◽  
Author(s):  
Vandita Kakkar ◽  
Indu Pal Kaur

Sesamol loaded solid lipid nanoparticles (SSLNs) were prepared with the aim of minimizing its distribution to tissues and achieving its targeting to the brain. Three scale-up batches (100x1 L) of S-SLNs were prepared using a microemulsification technique and all parameters were statistically compared with the small batch (1x;10 mL). S-SLNs with a particle size of less than 106 nm with a spherical shape (transmission electron microscopy) were successfully prepared with a total drug content and entrapment efficiency of 94.26±2.71% and 72.57±5.20%, respectively. Differential scanning calorimetry and infrared spectroscopy confirmed the formation of lipidic nanoparticles while powder X-ray diffraction revealed their amorphous profile. S-SLNs were found to be stable for three months at 5±3°C in accordance with International Conference on Harmonisation guidelines. The SLN preparation process was successfully scaled-up to a 100x batch on a laboratory scale. The procedure was easy to perform and allowed reproducible SLN dispersions to be obtained.


Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5302
Author(s):  
Lili Qin ◽  
Tianfeng Lu ◽  
Yao Qin ◽  
Yiwei He ◽  
Ningxin Cui ◽  
...  

Resveratrol (RSV) is a natural flavonoid polyphenol compound extracted from the plants which shows various biological activities. However, the clinical application of RSV is limited by its poor aqueous solubility, rapid metabolism and poor bioavailability. In this study, resveratrol-loaded solid lipid nanoparticles (RSV- SLNs) was design as a nano-antioxidant against the physical fatigue. The resultant RSV-SLNs were characterized by photon correlation spectroscopy (PCS), transmission electron micrographs (TEM), zeta potential, differential scanning calorimetry (DSC) and Raman spectroscopy pattern. Furthermore, the in vivo anti-fatigue effect assays showed that RSV-SLNs prolonged the mice exhausted time and running distance. The biochemical parameters of blood related to fatigue suggested that RSV-SLNs have potential applications to improve the antioxidant defense of the mice after extensive exercise and confer anti-fatigue capability. Furthermore, the molecular mechanisms of antioxidant by RSV-SLNs supplementation was investigated through the analysis of silent information regulator 2 homolog 1 (SIRT1) protein expression, which demonstrated that it could downregulate the expression of SIRT1 and increase autophagy markers, microtubule-associated protein 1 light chain 3-II (LC3-II) and sequestosome-1 (SQSTM1/p62). These results reveal that the RSV-SLNs may have great potential used as a novel anti-fatigue sports nutritional supplement.


2019 ◽  
Vol 13 (1) ◽  
pp. 46-61
Author(s):  
Archana Chacko ◽  
Amaldoss M.J. Newton

Background: The Jojoba Simmondsia Chinensis oil is used as one of the main ingredients which has an antioxidant, moisturizing and stabilizing activity. Likewise, grape seed (Vitis vinifera) oil is also used in this preparation which also has some remarkable medicinal properties such as antioxidant, astringent and is also used as a moisturizer. The Valacyclovir Solid Lipid Nanoparticles (SLN) are prepared in combination. Objective: The prime objective of the study was to prepare a nanodispersion with good stability indicating zeta potential. The formulations were prepared by varying concentrations of jojoba oil and grape seed oil which form the hybrid nanoparticles with the drug. Methods: The high-pressure hot-homogenization technique was used to prepare the nanoparticles. The prepared nanoparticles were subjected to characterization analysis such as Mean particle size, Zaverage, and Zeta potential by using Dynamic Light Scattering (DLS) and Photon Correlation Spectroscopy (PCS). The best formulation was subjected to Transmission Electron Microscopy (TEM) technique for surface morphology and other characterizations. The crystalline pattern of the drug alone, drug-loaded nanoparticles and nanoparticles without the drug was studied by XRD. The drug excipients compatibility studies were performed by using Fourier-Transform Infrared Spectroscopy (FTIR) Differential Scanning Calorimetry and (DSC). The other factors such as in vitro drug release, and % drug entrapment efficiency were studied by using suitable methods. Results: The results demonstrated that the particles are in nano range with good stability with appreciable Zeta potential (-48.2±mV). The selected formulations were analyzed for MPS which demonstrated the value of 306.7±183.4 and 416.5±289.3. The best formulation VNP5 demonstrated the Bellshaped curve and confirmed the uniform distribution. Conclusion: Based on the patents, it was demonstrated that valacyclovir is widely used in the treatment and prophylaxis of viral infections in human, particularly infections caused by the herpes group of viruses. Valacyclovir is an effective drug for the treatment of cold sores.


Sign in / Sign up

Export Citation Format

Share Document