scholarly journals Visualizing treatment delivery and deposition in mouse lungs using in vivo x-ray imaging

2019 ◽  
Vol 307 ◽  
pp. 282-291 ◽  
Author(s):  
Regine Gradl ◽  
Martin Dierolf ◽  
Lin Yang ◽  
Lorenz Hehn ◽  
Benedikt Günther ◽  
...  
1994 ◽  
Vol 38 ◽  
pp. 615-624
Author(s):  
Bradley E. Patt ◽  
Jan S. Iwanczyk ◽  
Martin P. Tornai ◽  
Craig S. Levin ◽  
Edward J. Hoffman

Abstract A nineteen element mercuric iodide (HgI2) detector array has been developed in order to investigate the potential of using this technology for in-vivo x-ray and gamma-ray imaging. A prototype cross-grid detector array was constructed with hexagonal pixels of 1.9 mm diameter (active area = 3.28 mm2) and 0.2 mm thick septa. The overall detector active area is roughly 65 mm2. A detector thickness of 1.2 mm was used to achieve about 100% efficiency at 60 keV and 67% efficiency at 140 keV The detector fabrication, geometry and structure were optimized for charge collection and to minimize crosstalk between elements. A section of a standard high resolution cast-lead gamma-camera collimator was incorporated into the detector to provide collimation matching the discrete pixel geometry. Measurements of spectral and spatial performance of the array were made using 241-Am and 99m-Tc sources. These measurements were compared with similar measurements made using an optimized single HgI2 x-ray detector with active area of about 3 mm2 and thickness of 500 μm.


Author(s):  
Kaye Morgan ◽  
Regine Gradl ◽  
Martin Dierolf ◽  
Christoph Jud ◽  
Benedikt Günther ◽  
...  

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Danielle Rand ◽  
Zoltan Derdak ◽  
Rolf Carlson ◽  
Jack R. Wands ◽  
Christoph Rose-Petruck

Abstract Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide and is almost uniformly fatal. Current methods of detection include ultrasound examination and imaging by CT scan or MRI; however, these techniques are problematic in terms of sensitivity and specificity and the detection of early tumors (<1 cm diameter) has proven elusive. Better, more specific and more sensitive detection methods are therefore urgently needed. Here we discuss the application of a newly developed x-ray imaging technique called Spatial Frequency Heterodyne Imaging (SFHI) for the early detection of HCC. SFHI uses x-rays scattered by an object to form an image and is more sensitive than conventional absorption-based x-radiography. We show that tissues labeled in vivo with gold nanoparticle contrast agents can be detected using SFHI. We also demonstrate that directed targeting and SFHI of HCC tumors in a mouse model is possible through the use of HCC-specific antibodies. The enhanced sensitivity of SFHI relative to currently available techniques enables the x-ray imaging of tumors that are just a few millimeters in diameter and substantially reduces the amount of nanoparticle contrast agent required for intravenous injection relative to absorption-based x-ray imaging.


2015 ◽  
Vol 64 (16) ◽  
pp. 823-830 ◽  
Author(s):  
Stephen W. Allison ◽  
Ethan S. Baker ◽  
Kyle J. Lynch ◽  
Firouzeh Sabri
Keyword(s):  
X Ray ◽  

Nanoscale ◽  
2018 ◽  
Vol 10 (1) ◽  
pp. 342-350 ◽  
Author(s):  
Xiaolong Li ◽  
Zhenluan Xue ◽  
Mingyang Jiang ◽  
Youbin Li ◽  
Songjun Zeng ◽  
...  

Soft X-ray-activated NaYF4:Gd/Tb nanoprobes with efficient green radioluminescence and good biocompatibility were developed for simultaneous X-ray imaging and X-ray-induced optical bioimaging.


2013 ◽  
Vol 3 (1) ◽  
Author(s):  
M. Bech ◽  
A. Tapfer ◽  
A. Velroyen ◽  
A. Yaroshenko ◽  
B. Pauwels ◽  
...  

Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Dorota A Kedziorek ◽  
Piotr Walczak ◽  
Yingli Fu ◽  
Nicole Azene ◽  
Aravind Arepally ◽  
...  

Introduction: Therapeutic angiogenesis in Peripheral Arterial Disease (PAD) using stem cell therapy is potentially complicated by immunorejection. To overcome this problem, microen-capsulation using the alginate-poly-L-lysine (PLL)-alginate (APA) method was developed to provide a protective porous bubble to block antibodies but allow exchange of small molecules. Recently, we have developed a method to enable X-ray detection of these capsules. However, cell survival within the capsules could not be determined. Plus PLL can be mildly cytotoxic. In the present study, we combined reporter gene methods to verify cell survival with X-ray detection of the microcapsules in a rabbit PAD model and studied the PLL impact on cell viability. Methods: Rabbit mesenchymal stem cells (MSCs) were transfected with triple fusion (TF) reporter gene for bioluminescence (firefly luciferase), fluorescence (red fluorescent protein) and PET (truncated thymidine kinase). TF-MSCs were encapsulated in the perfluorooctyl bromide (PFOB) capsules to enable computed tomographic detection. Capsule crosslinking was performed with three PLL concentrations, i.e., 0.005%, 0.025% and 0.05%. Bioluminescent imaging (BLI) was used to monitor cells survival for one week in vitro and after intramuscular injection in vivo . Results: Serial in vitro BLI enabled the detection of viable encapsulated MSCs without detrimental signal degradation (~13% decrease of BLI signal intensity after PFOB encapsulation comparing to equal number of naked MSCs). PLL did not result in cell death; higher PLL concentrations were correlated with stronger BLI signal. BLI signal production was only slightly reduced by second layer of alginate (~80% for 0.05% PLL). In vivo BLI demonstrated the detection of naked, APA, and PFOB-encapsulated TF-MSCs. X-ray imaging enabled PFOB microcapsules detection relative to vasculature. Conclusion: BLI allows monitoring of encapsulated cells survival. PLL concentrations ≤ 0.05% appear safe for encapsulated cells with higher concentration being associated with enhanced crosslinking and capsule stability. MSCs expressing TF reporter in PFOB microcapsules enables dual monitoring of cell delivery/capsule tracking by X-ray imaging and cell viability with BLI.


2017 ◽  
Vol 7 (7) ◽  
pp. 1555-1560 ◽  
Author(s):  
Yuhang Gao ◽  
Hui Sha ◽  
Jijun Shi ◽  
Jianguo Liu ◽  
Shuqiang Li ◽  
...  

Author(s):  
Nishad Km ◽  
Arul B ◽  
Rajasekaran S

 Objective: The present investigation was to formulate controlled release of mucoadhesive clarithromycin tablets using natural polymers.Methods: Tamarind seed polysaccharide obtained from Tamarindus indica and chitosan act as natural polymers. The formulated tablets of the combined form of thrombospondin (TSP) and chitosan were analyzed by in vitro dissolution method. The optimized formulations were selected for ex vivo and in vivo studies and compared with hydroxypropyl methylcellulose K100 polymer by evaluating gastric retention period by X-ray imaging technique, and drug bioavailability by a pharmacokinetic method from blood samples was determined by high-performance liquid chromatography-mass spectrometry method.Results: The gastric mucoadhesive tablets were prepared using chito-TSP polymers. The in vitro drug release showed good release character for 24 h. The ex vivo studies of tablets showed good adhesive property for a long time. The X-ray imaging technique also proved the adhesive character of tablets. From blood serum sample of rabbits, bioavailability of the drug is in according to the controlled release mechanism.Conclusion: The selected formulations were subjected to stability studies. The study concluded that combination of chitosan and TSP is best natural polymer for mucoadhesion by the advantages of controlled release and biodegradation.


Sign in / Sign up

Export Citation Format

Share Document