Experimental and numerical investigation of high strength stainless steel structures

2008 ◽  
Vol 64 (11) ◽  
pp. 1225-1230 ◽  
Author(s):  
Ben Young
2021 ◽  
Author(s):  
Jiaojiao Wu ◽  
Wenqi Liu ◽  
Napat Vajragupta ◽  
Alexander Hartmaier ◽  
Junhe Lian

For additive manufacturing materials, different process parameters might cause non-negligible microstructural defects. Due to the deficient or surplus energy input during the process, porosity would result in significantly different mechanical responses. In addition, the heterogeneity of the microstructure of additive manufactured material could increase the anisotropic behavior in both deformation and failure stages. The aim of this study is to perform a numerical investigation of the anisotropic plasticity affected by the microstructural features, in particular, texture and porosity. The coupling of the synthetic microstructure model and the crystal plasticity method is employed to consider the microstructural features and to predict the mechanical response at the macroscopic level, including both flow curve and r-value evolution. The additive manufactured 316L stainless steel is chosen as the reference steel in this study. Porosity decreases the stress of material, however, it reduces the anisotropy of material with both two types of textures. Regardless of porosity, grains with <111>//BD fiber of reference material is preferable for high strength requirement while the random orientations are favorable for homogeneous deformation in applications.


2020 ◽  
Vol 10 (12) ◽  
pp. 4393
Author(s):  
Yang Peng ◽  
Wei Chen ◽  
Zhe Wu ◽  
Jun Zhao ◽  
Jun Dong

Composite structures have become increasingly popular in civil engineering due to many advantages, such as light weight, excellent corrosion resistance and high productivity. However, they still lack the strength, stiffness, and convenience of constructions of fastener connections in steel structures. The most popular fastener connections in steel structures are slip-critical connections, and the major factors that influence their strength are the slip factors between faying surfaces and the clamping force due to the prevailing torque. This paper therefore examined the effect that changing the following parameters had on the slip factor: (1) replacing glass fiber reinforced plastic (GFRP) cover plates with stainless-steel cover plates; (2) adopting different surface treatments for GFRP-connecting plates and stainless-steel cover plates, respectively; and (3) applying different prevailing torques to the high-strength bolts. The impact on the long-term effects of the creep property in composite elements under the pressure of high-strength bolts was also studied with pre-tension force relaxation tests. It is shown that a high-efficiency fastener connection can be obtained by using stainless-steel cover plates with a grit-blasting surface treatment, with the maximum slip factor reaching 0.45, while the effects of the creep property are negligible.


2016 ◽  
Vol 20 (7) ◽  
pp. 1074-1097
Author(s):  
Ho Cheung Ho ◽  
Kwok-Fai Chung

In order to improve buildability of cold-formed steel structures, a series of research and development projects have been undertaken by the authors to examine structural behaviour of bolted moment connections between cold-formed steel sections. In this article, a systematic numerical investigation with advanced finite element modelling technique into the structural behaviour of high-strength cold-formed steel lapped Z-sections under gravity loads is presented, and details of the modelling techniques are presented thoroughly. It aims to examine deformation characteristics of these lapped Z-sections with different overlapping lengths. After careful calibration of advanced finite element models of lapped Z-sections against test data, it is demonstrated that the predicted moment rotation curves of these models follow closely the measured data not only up to the maximum applied moments but also at large deformations. In general, all of these lapped Z-sections are unable to resist sustained loadings after section failure under combined bending and shear, and they exhibit sudden unloadings once the maximum applied loads are attained. Hence, the proposed finite element models are able to simulate highly non-ductile deformation characteristics of these Z-sections. While long overlapping lengths over internal supports in multi-span cold-formed steel purlin systems are often advantageous in terms of both ‘stiffness and strength’, more steel materials are used at the same time. Hence, it is very desirable to establish an efficient use of the lapped Z-sections with optimal overlapping lengths. A total of six models with different overlapping lengths are then extended to simulate the structural behaviour of lapped double-span beams, and extensive material and geometrical non-linear analyses have been carried out. It is found that lapped double-span beams with practical overlapping lengths tend to behave superior to continuous double-span beams in terms of both load resistances and deformations. Depending on the overlapping lengths of the lapped Z-sections, different system failure mechanisms have been clearly identified after significant moment redistribution within the beams, and their structural behaviour has been compared in a rational manner. Consequently, these models will be readily employed to investigate the structural behaviour of high-strength cold-formed steel lapped Z-sections under a wide range of practical loading and boundary loading conditions for possible development of effective design rules.


Author(s):  
G. Fourlaris ◽  
T. Gladman

Stainless steels have widespread applications due to their good corrosion resistance, but for certain types of large naval constructions, other requirements are imposed such as high strength and toughness , and modified magnetic characteristics.The magnetic characteristics of a 302 type metastable austenitic stainless steel has been assessed after various cold rolling treatments designed to increase strength by strain inducement of martensite. A grade 817M40 low alloy medium carbon steel was used as a reference material.The metastable austenitic stainless steel after solution treatment possesses a fully austenitic microstructure. However its tensile strength , in the solution treated condition , is low.Cold rolling results in the strain induced transformation to α’- martensite in austenitic matrix and enhances the tensile strength. However , α’-martensite is ferromagnetic , and its introduction to an otherwise fully paramagnetic matrix alters the magnetic response of the material. An example of the mixed martensitic-retained austenitic microstructure obtained after the cold rolling experiment is provided in the SEM micrograph of Figure 1.


Alloy Digest ◽  
1981 ◽  
Vol 30 (12) ◽  

Abstract METGLAS MBF-30A is a brazing foil in ductile, flexible metallic-glass form (a similar grade, MBF-30, is identical except that it has larger dimensional tolerances). This foil provides an alloy with high strength at both elevated and room temperatures. It can be used to join highly stressed stainless steel and heat-resisting alloy components. The excellent flow characteristics of this alloy recommend it for assemblies with good fit-up and tight-tolerance joints. It works well on thin-foil, honeycomb designs and on fairly heavy components. This datasheet provides information on composition, physical properties, and microstructure. It also includes information on heat treating. Filing Code: Ni-273. Producer or source: Allied Corporation.


Alloy Digest ◽  
1981 ◽  
Vol 30 (7) ◽  

Abstract AISI No. 633 is a chromium-nickel-molybdenum stainless steel whose properties can be changed by heat treatment. It bridges the gap between the austenitic and martensitic stainless steels; that is, it has some of the properties of each. Its uses include high-strength structural applications, corrosion-resistant springs and knife blades. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-389. Producer or source: Stainless steel mills.


Alloy Digest ◽  
1961 ◽  
Vol 10 (12) ◽  

Abstract Armco 21-6-9 is an austenitic stainless steel alloy designed for use in applications where a combination of high strength and corrosion resistance is desired. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on low and high temperature performance, and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-125. Producer or source: Armco Inc., Eastern Steel Division.


Alloy Digest ◽  
1961 ◽  
Vol 10 (4) ◽  

Abstract Jethete M.151 is a high strength, transformable stainless steel, suitable for welding. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on forming, heat treating, and joining. Filing Code: SS-116. Producer or source: Luria Steel & Trading Corporation (Agent).


Alloy Digest ◽  
2002 ◽  
Vol 51 (11) ◽  

Abstract Allvac 13-8 has good fabricability and can be age hardened by a single treatment in the range 510-620 deg C (950-1150 deg F). Cold working prior to aging enhances the aging. This martensitic precipitation-hardening stainless steel has very good resistance to general corrosion and stress-corrosion cracking. It develops very high strength and exhibits good transverse ductility and toughness in heavy sections. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-866. Producer or source: Allvac Metals Company.


Alloy Digest ◽  
1988 ◽  
Vol 37 (6) ◽  

Abstract Allegheny Ludlum AL 15-7 Alloy is a chromium-nickel-molybdenum-aluminum semi-austenitic stainless steel. It is heat treatable to high strength and it has a moderate level of corrosion resistance. It is available both as a conventionally melted product and as vacuum arc or electroslag refined material. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-496. Producer or source: Allegheny Ludlum Corporation.


Sign in / Sign up

Export Citation Format

Share Document