Experimental and numerical study regarding a fabricated CFST frame composite wall structure

2019 ◽  
Vol 162 ◽  
pp. 105718 ◽  
Author(s):  
Ru-wei Wang ◽  
Wan-Lin Cao ◽  
Fei Yin ◽  
Hong-Ying Dong
2017 ◽  
Vol 107 ◽  
pp. 00055 ◽  
Author(s):  
Maciej Major ◽  
Krzysztof Kuliński ◽  
Izabela Major

2013 ◽  
Vol 368-370 ◽  
pp. 1043-1047
Author(s):  
Yin Zhang ◽  
You Han ◽  
Shuai Liang

Ecological composite wall as ecological composite wall structure of the main stress components, the seismic performance is ecological composite wall structure seismic performance evaluation system of the main content. Based on the grey system theory, the grey correlation analysis to the key parameters (the mouth of the cave, frame structure, height to width ratio) change ecological composite wall test results are analyzed, the key parameters on the ecological composite wall the influence law of seismic performance, for choosing wall structure design method to provide basis.


2019 ◽  
Vol 6 (4) ◽  
pp. 181965 ◽  
Author(s):  
Jia Suizi ◽  
Cao Wanlin ◽  
Liu Zibin

This study developed a low-energy consumption composite wall structure constructed with a pre-fabricated lightweight steel frame that is suitable for houses in villages and towns and evaluated its anti-seismic performance. A low-reversed cyclic-loading test was conducted on four full-scale pre-fabricated structure specimens, including a lightweight, concrete-filled steel tube (CFST) column frame specimen (abbreviated as SFCF), a lightweight CFST column frame composite wall specimen (abbreviated as SFCFW), an H-steel column frame specimen (abbreviated as HSCF) and an H-steel column frame composite wall specimen (abbreviated as HSCFW). The failure characteristics, hysteretic behaviour, strength, rigidity, ductility and energy dissipation capacity of each specimen were compared and analysed. The results demonstrated that the pre-fabricated, double L-shaped beam–column joint with a stiffener rib which was proposed in this study worked reliably and exhibited good anti-seismic performance. The yield, ultimate and frame yield loads of the specimen SFCFW were 1.72, 1.80 and 2.03 times higher than those of specimen SFCF. The yield load, ultimate load and frame yield loads of specimen HSCFW were 1.27, 1.68 and 1.82 times higher than those of specimen HSCF. This indicates that the embedded composite wall contributed significantly to the horizontal bearing capacities of the SFCF and HSCF specimens. The embedded composite wall was divided into multiple strip-shaped composite panels during failure and achieved a stable support for the frame in the later stages of elastoplastic deformation. The horizontal strips of the tongue-and-groove connection between the strip-shaped composite panels produced reciprocating bite displacements, and ultimately improved the structure's energy dissipation capacity significantly.


2013 ◽  
Vol 438-439 ◽  
pp. 1481-1484
Author(s):  
Yu Yang He ◽  
Quan Yuan

In this paper, the shaking table test of a 1/6 scale multi-rib composite wall supported on frame was conducted. The test structure has undergone elastic stage and cracking up the whole process of destruction, the dynamic characteristics of the structure in the various stages of change and the dynamic response were recorded. The shaking table test was in two steps, the first step for modal testing, modal test results such as period and damping; the second step was the seismic test to measure the dynamic characteristics of the test structure, acceleration response and displacement reaction to study the bottom frame ribbed composite wall structure under strong earthquake laws of failure and collapse failure criterion.


2017 ◽  
Vol 156 ◽  
pp. 225-237 ◽  
Author(s):  
Yushun Li ◽  
Jian Yao ◽  
Ran Li ◽  
Zhenwen Zhang ◽  
Jialiang Zhang

2011 ◽  
Vol 94-96 ◽  
pp. 112-118
Author(s):  
Cheng Hao Wu ◽  
Meng Guo ◽  
Xu Feng Jiang

The multi-grid composite wall has unique structural types, and its stiffness can be adjusted according to different anti-seismic requests and complex architectural style. Referencing the frame-shear wall structure, the cooperative work mechanism and shear-sharing ratio calculation method of frame-composite wall structure are studied systematically in this paper. Based on the fundamental theory of Timoshenko beam, the frame-composite wall structure is regarded as double anti-seismic system consisting of shear type frames and shear-flexural type beams. The fundamental differential equation is established by the continuous approach, and its analytical solution of displacement and internal force are derived. Then the practical computational method of earthquake shear-sharing ratio on the frame-composite wall structure is put forward, and the influence degree that the composite wall rigidity degenerates to the structure internal force distribution is explained through concrete examples.


2020 ◽  
Vol 219 ◽  
pp. 110853
Author(s):  
Wan-Lin Cao ◽  
Ru-Wei Wang ◽  
Fei Yin ◽  
Hong-Ying Dong

2011 ◽  
Vol 250-253 ◽  
pp. 843-848
Author(s):  
Wei Huang ◽  
Hao Zhen Wu ◽  
Guo Xin Chen ◽  
Yin Zhang ◽  
Jun Yuan Wang ◽  
...  

In order to make the new composite wall structure the group developed to adapt different regional natural conditions, and along with the demand of gradually in-depth study the damage characteristics of the new composite wall, need to research the mechanical properties of the wall filling materials. In this paper, the ZG-CSS Electronic Universal Testing Machine was used on the uniaxial compressive test of the three blocks(the mud billet block, the cotton stalk block, the recycled EPS lightweight concrete block), to analyze the failure characteristics of the blocks and the other mechanical properties, such as Poisson’s ratio, elastic modulus, then the full compressive stress-strain curves are given, and at last fitting the mathematical expression of the uniaxial compressive stress - strain curves. And this paper also gives the yield criterion based on the unified strength theory of the three ecological filling blocks.


Sign in / Sign up

Export Citation Format

Share Document