Comparing the immunomodulatory properties of different mesenchymal stromal cells and their extracellular vesicles

Cytotherapy ◽  
2020 ◽  
Vol 22 (5) ◽  
pp. S109
Author(s):  
A. Torres Crigna ◽  
S. Uhlig ◽  
H. Klueter ◽  
K. Bieback
2021 ◽  
Vol 22 (13) ◽  
pp. 6837
Author(s):  
Pauline Rozier ◽  
Marie Maumus ◽  
Claire Bony ◽  
Alexandre Thibault Jacques Maria ◽  
Florence Sabatier ◽  
...  

Systemic sclerosis (SSc) is a complex disorder resulting from dysregulated interactions between the three main pathophysiological axes: fibrosis, immune dysfunction, and vasculopathy, with no specific treatment available to date. Adipose tissue-derived mesenchymal stromal cells (ASCs) and their extracellular vesicles (EVs) have proved efficacy in pre-clinical murine models of SSc. However, their precise action mechanism is still not fully understood. Because of the lack of availability of fibroblasts isolated from SSc patients (SSc-Fb), our aim was to determine whether a TGFβ1-induced model of human myofibroblasts (Tβ-Fb) could reproduce the characteristics of SSc-Fb and be used to evaluate the anti-fibrotic function of ASCs and their EVs. We found out that Tβ-Fb displayed the main morphological and molecular features of SSc-Fb, including the enlarged hypertrophic morphology and expression of several markers associated with the myofibroblastic phenotype. Using this model, we showed that ASCs were able to regulate the expression of most myofibroblastic markers on Tβ-Fb and SSc-Fb, but only when pre-stimulated with TGFβ1. Of interest, ASC-derived EVs were more effective than parental cells for improving the myofibroblastic phenotype. In conclusion, we provided evidence that Tβ-Fb are a relevant model to mimic the main characteristics of SSc fibroblasts and investigate the mechanism of action of ASCs. We further reported that ASC-EVs are more effective than parental cells suggesting that the TGFβ1-induced pro-fibrotic environment may alter the function of ASCs.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Maurice A. Canham ◽  
John D. M. Campbell ◽  
Joanne C. Mountford

Abstract More than seven months into the coronavirus disease -19 (COVID-19) pandemic, infection from the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has led to over 21.2 million cases and resulted in over 760,000 deaths worldwide so far. As a result, COVID-19 has changed all our lives as we battle to curtail the spread of the infection in the absence of specific therapies against coronaviruses and in anticipation of a proven safe and efficacious vaccine. Common with previous outbreaks of coronavirus infections, SARS and Middle East respiratory syndrome, COVID-19 can lead to acute respiratory distress syndrome (ARDS) that arises due to an imbalanced immune response. While several repurposed antiviral and host-response drugs are under examination as potential treatments, other novel therapeutics are also being explored to alleviate the effects on critically ill patients. The use of mesenchymal stromal cells (MSCs) for COVID-19 has become an attractive avenue down which almost 70 different clinical trial teams have ventured. Successfully trialled for the treatment of other conditions such as multiple sclerosis, osteoarthritis and graft versus host disease, MSCs possess both regenerative and immunomodulatory properties, the latter of which can be harnessed to reduce the severity and longevity of ARDS in patients under intensive care due to SARS-CoV-2 infection.


PLoS ONE ◽  
2015 ◽  
Vol 10 (4) ◽  
pp. e0122954 ◽  
Author(s):  
Laurence Tessier ◽  
Dorothee Bienzle ◽  
Lynn B. Williams ◽  
Thomas G. Koch

2022 ◽  
Vol 2 ◽  
Author(s):  
Oleh Andrukhov ◽  
Alice Blufstein ◽  
Christian Behm

Antimicrobial defense is an essential component of host-microbial homeostasis and contributes substantially to oral health maintenance. Dental mesenchymal stromal cells (MSCs) possess multilineage differentiation potential, immunomodulatory properties and play an important role in various processes like regeneration and disease progression. Recent studies show that dental MSCs might also be involved in antibacterial defense. This occurs by producing antimicrobial peptides or attracting professional phagocytic immune cells and modulating their activity. The production of antimicrobial peptides and immunomodulatory abilities of dental MSCs are enhanced by an inflammatory environment and influenced by vitamin D3. Antimicrobial peptides also have anti-inflammatory effects in dental MSCs and improve their differentiation potential. Augmentation of antibacterial efficiency of dental MSCs could broaden their clinical application in dentistry.


2020 ◽  
Author(s):  
Ramés Salcedo-Jiménez ◽  
Judith Koenig ◽  
Olivia Lee ◽  
Thomas W.G. Gibson ◽  
Pavneesh Madan ◽  
...  

AbstractExtracorporeal shock wave therapy (ESWT) has been shown to induce different biological effects on a variety of cells, including regulation and stimulation of their function and metabolism. ESWT can promote different biological responses such as proliferation, migration, and regenerations of cells. Recent studies have shown that mesenchymal stromal cells (MSCs) secrete factors that enhance the regeneration of tissues, stimulate proliferation and differentiation of cells and decrease inflammatory and immune-reactions. Clinically, the combination of these two therapies has been used as a treatment for tendon and ligament lesions in horses; however, there is no scientific evidence supporting this combination of therapies in vivo. Therefore, the objectives of the study were to evaluate the effects of ESWT on equine umbilical cord blood mesenchymal stromal cells (CB-MSCs) proliferative, metabolic, migrative, differentiation, and immunomodulatory properties in vitro. Three equine CB-MSC cultures from independent donors were treated using an electrohydraulic shock wave generator attached to a water bath. All experiments were performed as triplicates. Proliferation, viability, migration and immunomodulatory properties of the cells were evaluated. Equine CB-MSCs were induced to evaluate their trilineage differentiation potential. ESWT treated cells had increased metabolic activity, showed positive adipogenic, osteogenic, and chondrogenic differentiation, and showed higher potential for differentiation towards the adipogenic and osteogenic cell fates. ESWT treated cells showed similar immunomodulatory properties to none-ESWT treated cells. Equine CB-MSCs are responsive to ESWT treatment and showed increased metabolic, adipogenic and osteogenic activity, but unaltered immunosuppressive properties. In vivo studies are warranted to determine if synergistic effects occur in the treatment of musculoskeletal injuries if ESWT and equine CB-MSC therapies are combined.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Di Gu ◽  
Xiangyu Zou ◽  
Guanqun Ju ◽  
Guangyuan Zhang ◽  
Erdun Bao ◽  
...  

Background. The immoderation of mitochondrial fission is one of the main contributors in ischemia reperfusion injury (IRI) and mesenchymal stromal cells (MSCs) derived extracellular vesicles have been regarded as a potential therapy method. Here, we hypothesized that extracellular vesicles (EVs) derived from human Wharton Jelly mesenchymal stromal cells (hWJMSCs) ameliorate acute renal IRI by inhibiting mitochondrial fission through miR-30b/c/d.Methods. EVs isolated from the condition medium of MCS were injected intravenously in rats immediately after monolateral nephrectomy and renal pedicle occlusion for 45 minutes. Animals were sacrificed at 24 h after reperfusion and samples were collected. MitoTracker Red staining was used to see the morphology of the mitochondria. The expression of DRP1 was measured by western blot. miR-30 in EVs and rat tubular epithelial cells was assessed by qRT-PCR. Apoptosis pathway was identified by immunostaining.Results. We found that the expression of miR-30 in injured kidney tissues was declined and mitochondrial dynamics turned to fission. But they were both restored in EVs group in parallel with reduced cell apoptosis. What is more, when the miR-30 antagomirs were used to reduce the miRNA levels, all the related effects of EVs reduced remarkably.Conclusion. A single administration of hWJMSC-EVs could protect the kidney from IRI by inhibition of mitochondrial fission via miR-30.


2018 ◽  
Vol 119 (10) ◽  
pp. 8048-8073 ◽  
Author(s):  
Vajihe Taghdiri Nooshabadi ◽  
Soura Mardpour ◽  
Aliakbar Yousefi-Ahmadipour ◽  
Amir Allahverdi ◽  
Mehrnaz Izadpanah ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Anna Maria Tolomeo ◽  
Ignazio Castagliuolo ◽  
Martina Piccoli ◽  
Michele Grassi ◽  
Fabio Magarotto ◽  
...  

Several reports have described a beneficial effect of Mesenchymal Stromal Cells (MSCs) and of their secreted extracellular vesicles (EVs) in mice with experimental colitis. However, the effects of the two treatments have not been thoroughly compared in this model. Here, we compared the effects of MSCs and of MSC-EV administration in mice with colitis induced by dextran sulfate sodium (DSS). Since cytokine conditioning was reported to enhance the immune modulatory activity of MSCs, the cells were kept either under standard culture conditions (naïve, nMSCs) or primed with a cocktail of pro-inflammatory cytokines, including IL1β, IL6 and TNFα (induced, iMSCs). In our experimental conditions, nMSCs and iMSCs administration resulted in both clinical and histological worsening and was associated with pro-inflammatory polarization of intestinal macrophages. However, mice treated with iEVs showed clinico-pathological improvement, decreased intestinal fibrosis and angiogenesis and a striking increase in intestinal expression of Mucin 5ac, suggesting improved epithelial function. Moreover, treatment with iEVs resulted in the polarization of intestinal macrophages towards and anti-inflammatory phenotype and in an increased Treg/Teff ratio at the level of the intestinal lymph node. Collectively, these data confirm that MSCs can behave either as anti- or as pro-inflammatory agents depending on the host environment. In contrast, EVs showed a beneficial effect, suggesting a more predictable behavior, a safer therapeutic profile and a higher therapeutic efficacy with respect to their cells of origin.


2020 ◽  
Vol 29 ◽  
pp. 096368972094567
Author(s):  
Changyi Zhang ◽  
Hongwu Wang ◽  
Godfrey C.F. Chan ◽  
Yu Zhou ◽  
Xiulan Lai ◽  
...  

Endoplasmic reticulum (ER) stress is implicated in the pathogenesis of many diseases, including myocardial ischemia/reperfusion injury. We hypothesized that human umbilical cord mesenchymal stromal cells derived extracellular vesicles (HuMSC-EVs) could protect cardiac cells against hyperactive ER stress induced by hypoxia/reoxygenation (H/R) injury. The H/R model was generated using the H9c2 cultured cardiac cell line. HuMSC-EVs were extracted using a commercially available exosome isolation reagent. Levels of apoptosis-related signaling molecules and the degree of ER stress were assessed by western blot. The role of the PI3K/Akt pathway was investigated using signaling inhibitors. Lactate dehydrogenase leakage and 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) analysis were used for evaluating the therapeutic effects of HuMSC-EVs in vitro. The results showed that ER stress and the rate of apoptosis were increased in the context of H/R injury. Treatment with HuMSC-EVs inhibited ER stress and increased survival in H9c2 cells exposed to H/R. Mechanistically, the PI3K/Akt pathway was activated by treatment with HuMSC-EVs after H/R. Inhibition of the PI3K/Akt pathway by a specific inhibitor, LY294002, partially reduced the protective effect of HuMSC-EVs. Our findings suggest that HuMSC-EVs could alleviate ER stress–induced apoptosis during H/R via activation of the PI3K/Akt pathway.


Sign in / Sign up

Export Citation Format

Share Document