Intranasal drug delivery: Novel delivery route for effective management of neurological disorders

2019 ◽  
Vol 52 ◽  
pp. 130-137 ◽  
Author(s):  
Ashwini Patel ◽  
Nazneen Surti ◽  
Ashok Mahajan
2021 ◽  
Vol 11 (3) ◽  
pp. 3640-3651

Neurological disorders are increasing worldwide due to the rapidly aging population, which increases healthcare costs. Drug delivery to the brain is challenging because of the brain's anatomy, and orally administered drugsare mostly unable to cross BBB. Intranasal (Nose to Brain) administration of drugs is one novel approach to address this challenge. Intranasal delivery has appeared to evade the blood-brain barrier (BBB) and deliver the drug into the CNS at a higher rate and degree than another traditional route. Transport of drugs from the nasal cavity to the brain along with olfactory and trigeminal nerves. The purpose of this review is drug delivery by the intranasal route for treating neurological disorders like Parkinson’s and depression because drug delivery by other routes is unable to cross BBB. Still, delivery through the intranasal route by using the nanotechnology approach is possible to deliver the drug directly to CNS.


2014 ◽  
Vol 21 (37) ◽  
pp. 4247-4256 ◽  
Author(s):  
Wei-Yi Ong ◽  
Suku-Maran Shalini ◽  
Luca Costantino

2020 ◽  
Vol 26 ◽  
Author(s):  
John Chen ◽  
Andrew Martin ◽  
Warren H. Finlay

Background: Many drugs are delivered intranasally for local or systemic effect, typically in the form of droplets or aerosols. Because of the high cost of in vivo studies, drug developers and researchers often turn to in vitro or in silico testing when first evaluating the behavior and properties of intranasal drug delivery devices and formulations. Recent advances in manufacturing and computer technologies have allowed for increasingly realistic and sophisticated in vitro and in silico reconstructions of the human nasal airways. Objective: To perform a summary of advances in understanding of intranasal drug delivery based on recent in vitro and in silico studies. Conclusion: The turbinates are a common target for local drug delivery applications, and while nasal sprays are able to reach this region, there is currently no broad consensus across the in vitro and in silico literature concerning optimal parameters for device design, formulation properties and patient technique which would maximize turbinate deposition. Nebulizers are able to more easily target the turbinates, but come with the disadvantage of significant lung deposition. Targeting of the olfactory region of the nasal cavity has been explored for potential treatment of central nervous system conditions. Conventional intranasal devices, such as nasal sprays and nebulizers, deliver very little dose to the olfactory region. Recent progress in our understanding of intranasal delivery will be useful in the development of the next generation of intranasal drug delivery devices.


2009 ◽  
Vol 61 (2) ◽  
pp. 90-94 ◽  
Author(s):  
Yashpal Chugh ◽  
Pragati Kapoor ◽  
A. K. Kapoor

Author(s):  
Sreeja C Nair ◽  
Karthika Ramesh ◽  
Krishnapriya M ◽  
Asha Paul

ABSTRACTObjective: The objective behind our study is that a mucoadhesive rectal hydrogel chitosan sodium alginate carbamazepine (CBZ) microspheres forthe purpose of controlled release for the treatment of epilepsy to avoid the possible side effects.Methods: The study was conducted to formulate controlled release chitosan sodium alginate CBZ microspheres with the dispersion of CBZ into thenatural polymers chitosan and sodium alginate forming microspheres conducting along with their evaluation studies.Results: The formulated microspheres were subjected to various evaluation parameters, and all the physical parameters examined are within theacceptable limits. Further, the optimized microsphere formulation (CM5) was characterized. Hence, the developed optimized microsphere formulation(CM5) seems to be a viable substitute to conventional drug delivery system for the effective management of epilepsy.Conclusion: The prepared formulation also provides a desired CBZ loaded sodium alginate microspheres with the controlled release drug delivery.Keywords: Carbamazepine, Sodium alginate microspheres, Particle size.


2021 ◽  
Vol 12 ◽  
Author(s):  
Haiyang Wu ◽  
Yan Zhou ◽  
Yulin Wang ◽  
Linjian Tong ◽  
Fanchen Wang ◽  
...  

Background: The management of various central nervous system (CNS) disorders has been challenging, due to highly compact blood-brain barrier (BBB) impedes the access of most pharmacological agents to the brain. Among multiple strategies proposed to circumvent this challenge, intranasal delivery route has sparked great interest for brain targeting in the past decades. The aim of this study was to apply scientometric method to estimate the current status and future trends of the field from a holistic perspective.Methods: All relevant publications during 1998–2020 were retrieved from the Web of Science Core Collection (SCIE, 1998-present). Two different scientometric software including VOS viewer and CiteSpace, and one online platform were used to conduct co-authorship, co-citation, and co-occurrence analysis of journals, countries, institutes, authors, references and keywords.Results: A total of 2,928 documents, including 2,456 original articles and 472 reviews, were retrieved. Our analysis revealed a significant increasing trend in the total number of scientific publications over the past 2 decades (R2 = 0.98). The United States dominated the field, reflecting in the largest amount of publications (971), the highest H-index (99), and extensive international collaboration. Jamia Hamdard contributed to most publications. Frey WH and Illum L were key researchers with the highest number of publications and citations, respectively. The International Journal of Pharmaceutics was the most influential academic journal, and Pharmacology/Pharmacy and Neurosciences/Neurology were the hottest research categories in this field. Based on keywords occurrence analysis, four main topics were identified, and the current research focus of this field has shifted from cluster 4 (pathways and mechanisms of intranasal delivery) to cluster 2 (the study of nasal drug delivery systems), especially the nanostructured and nano-sized carrier systems. Keywords burst detection revealed that the research focus on oxidative stress, drug delivery, neuroinflammation, nanostructured lipid carrier, and formulation deserves our continued attention.Conclusion: To the authors’ knowledge, this is the first scientometric analysis regarding intranasal delivery research. This study has demonstrated a comprehensive knowledge map, development landscape and future directions of intranasal delivery research, which provides a practical and valuable reference for scholars and policymakers in this field.


1998 ◽  
Vol 29 (1-2) ◽  
pp. 39-49 ◽  
Author(s):  
Anwar A Hussain

2015 ◽  
Vol 20 (4) ◽  
pp. 491-495 ◽  
Author(s):  
Uma Do J.P. Rai ◽  
Simon A. Young ◽  
Thilini R. Thrimawithana ◽  
Hamdy Abdelkader ◽  
Adam W.G. Alani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document