A novel approach for dermal controlled release of salicylic acid for improved anti-inflammatory action: Combination of hydrophilic-lipophilic balance and response surface methodology

2019 ◽  
Vol 52 ◽  
pp. 870-884 ◽  
Author(s):  
Priyam Sinha ◽  
Nidhi Srivastava ◽  
Vineet Kumar Rai ◽  
Rakesh Mishra ◽  
P.V. Ajayakumar ◽  
...  
2021 ◽  
Vol 45 (14) ◽  
pp. 6192-6205
Author(s):  
Haiqing Xu ◽  
Yuhang Gao ◽  
Qiantu Tao ◽  
Aiping Li ◽  
Zhanchao Liu ◽  
...  

The molecularly imprinted polymer prepared on the nanoreactor SBA-15 displayed excellent ordered mesoporous structure and superior adsorption property for salicylic acid.


2020 ◽  
Vol 14 (4) ◽  
pp. 572-582
Author(s):  
Soumaya Hachani ◽  
◽  
Sarah Boukhalkhal ◽  
Ziyad Ben Ahmed ◽  
Mohamed Harrat ◽  
...  

The Box-Behnken design was used to investigate the effect of three independent variables – time, temperature and solvent-to-solid ratio on the responses of total phenolics, total flavonoids, 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity and cupric ion reducing antioxidant capacity (CUPRAC) of date fruit methanolic extracts. Response surface analysis showed that the optimal ultrasound extraction parameters that maximized the responses were 30 min, 298 K and 74.4 ml/g. Under optimum conditions, UHPLC-DAD-MS/MS was used to tentatively characterize 11 phenolic compounds. The experimental values for the quantification of phenolic compounds and antioxidant activities are in accordance with the predicted values, indicating the suitability of the model and the success of response surface methodology in optimizing the ultrasound extraction conditions.


2012 ◽  
Vol 3 (2) ◽  
pp. 62-77
Author(s):  
Janet H. Sanders ◽  
Silvanus J. Udoka

To meet today’s business culture of rapid deployment of new products and processes, engineering and manufacturing personnel must utilize efficient means for process development. This paper discusses a novel approach to characterize a task driven manufacturing process. The approach utilized Response Surface Methodology (RSM) to investigate, identify, and prioritize the key process drivers and subsequently develop quantifiable methods for setting the operating levels for the process drivers to determine if the current levels of these key process drivers result in a process response value that is near optimum. The approach identifies the improved response region, generates a mathematical model of the process and specifies an operating window that would yield consistent results for each of the process drivers. A High Strength Fiber Splicing process was used to demonstrate this approach. This study led to the identification of the region that improved the process yield from 65% to 85%.


Sign in / Sign up

Export Citation Format

Share Document