Matrin-3 plays an important role in cell cycle and apoptosis for survival in malignant melanoma

2020 ◽  
Vol 100 (2) ◽  
pp. 110-119
Author(s):  
Haruka Kuriyama ◽  
Satoshi Fukushima ◽  
Toshihiro Kimura ◽  
Etsuko Okada ◽  
Takayuki Ishibashi ◽  
...  
Author(s):  
Xu-Ε Chen ◽  
Pu Chen ◽  
Shan-Shan Chen ◽  
Ting Ma ◽  
Guang Shi ◽  
...  

2020 ◽  
Vol 21 (5) ◽  
pp. 1656
Author(s):  
Mohammed O. Altonsy ◽  
Anutosh Ganguly ◽  
Matthias Amrein ◽  
Philip Surmanowicz ◽  
Shu Shun Li ◽  
...  

Microtubules (MTs), microfilaments, and intermediate filaments, the main constituents of the cytoskeleton, undergo continuous structural changes (metamorphosis), which are central to cellular growth, division, and release of microvesicles (MVs). Altered MTs dynamics, uncontrolled proliferation, and increased production of MVs are hallmarks of carcinogenesis. Class III beta-tubulin (β3-tubulin), one of seven β-tubulin isotypes, is a primary component of MT, which correlates with enhanced neoplastic cell survival, metastasis and resistance to chemotherapy. We studied the effects of β3-tubulin gene silencing on MTs dynamics, cell cycle, and MVs release in human malignant melanoma cells (A375). The knockdown of β3-tubulin induced G2/M cell cycle arrest, impaired MTs dynamics, and reduced spontaneous MVs release. Additional studies are therefore required to elucidate the pathophysiologic and therapeutic role of β3-tubulin in melanoma.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Saud Alarifi ◽  
Daoud Ali ◽  
Saad Alkahtani ◽  
Rafa S. Almeer

The present work was designed to investigate the effect of palladium nanoparticles (PdNPs) on human skin malignant melanoma (A375) cells, for example, induction of apoptosis, cytotoxicity, and DNA damage. Diseases resulting from dermal exposure may have a significant impact on human health. There is a little study that has been reported on the toxic potential of PdNPs on A375. Cytotoxic potential of PdNPs (0, 5, 10, 20, and 40 μg/ml) was measured by tetrazolium bromide (MTT assay) and NRU assay in A375 cells. PdNPs elicited concentration and time-dependent cytotoxicity, and longer exposure period induced more cytotoxicity as measured by MTT and NRU assay. The molecular mechanisms of cytotoxicity through cell cycle arrest and apoptosis were investigated by AO (acridine orange)/EtBr (ethidium bromide) stain and flow cytometry. PdNPs not only inhibit proliferation of A375 cells in a dose- and time-dependent model but also induce apoptosis and cell cycle arrest at G2/M phase (before 12 h) and S phase (after 24 h). The induction of oxidative stress in A375 cells treated with above concentration PdNPs for 24 and 48 h increased ROS level; on the other hand, glutathione level was declined. Apoptosis and DNA damage was significantly increased after treatment of PdNPs. Considering all results, PdNPs showed cytotoxicity and genotoxic effect in A375 cells.


Drug Research ◽  
2020 ◽  
Vol 70 (12) ◽  
pp. 563-569
Author(s):  
Bahareh Mohammadi Jobani ◽  
Elham Mohebi ◽  
Nowruz Najafzadeh

Abstract Background Malignant melanoma is a common form of skin cancer that contains different cell types recognized by various cell surface markers. Dacarbazine-based combination chemotherapy is frequently used for the treatment of melanoma. Despite its potent anticancer properties, resistance to dacarbazine develops in malignant melanoma. Here, we aim to improve response to dacarbazine therapy by pretreatment with all-trans retinoic acid (ATRA) in CD117+ melanoma cells. Methods The CD117+ melanoma cells were sorted from A375 malignant melanoma cell line using magnetic-activated cell sorting (MACS). The cell viability was examined by cell proliferation assay (MTT). Apoptosis was determined by acridine orange/ ethidium bromide staining. Indeed, we performed flow cytometry to evaluate the cell cycle arrest. Results Here, the CD117+ melanoma cells were incubated with various concentrations of ATRA, dacarbazine, and their combination to determine IC50 values. We found that 20 µM ATRA treatment followed by dacarbazine was found to be more effective than dacarbazine alone. There was an indication that the combination of ATRA with dacarbazine (ATRA/dacarbazine) caused more apoptosis and necrosis in the melanoma cells (P<0.05). Furthermore, ATRA/dacarbazine treatment inhibited the cell at the G0/G1 phase, while dacarbazine alone inhibited the cells at S phase. Conclusion Collectively, combined treatment with ATRA and dacarbazine induced more apoptosis and enhanced the cell cycle arrest of CD117+ melanoma cells. These results suggested that ATRA increased the sensitivity of melanoma cells to the effect of dacarbazine.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
G. E. Piérard

The establishment of the diagnosis of cutaneous malignant melanoma (CMM) always calls for histopathological confirmation. Further to the recognition of the CMM aspects, immunohistochemistry is helpful, in particular, in determining the size of the replicative compartment and the activity in each of the cell cycle phases (G1, S, G2, M). The involvement of cancer stem cells and transient amplifier cells in CMM genesis is beyond doubt. The proliferation activity is indicative of the neoplastic progression and is often related to the clinical growth rate of the neoplasm. It allows to distinguish high-risk CMM commonly showing a high growth rate, from those CMMs of lower malignancy associated with a more limited growth rate. The recruitment and progression of CMM cells in the cell cycle of proliferation depend on mitogen-activated protein kinase (MAPK) pathway and result from a loss of control normally involving a series of key regulatory cyclins. In addition, the apoptotic pathways potentially counteracting any excess in proliferative activity are out of the dependency of specific regulatory molecular mechanisms. Key molecular components involved in the deregulation of the growth fraction, the cell cycle phases of proliferation, and apoptosis are presently described in CMM.


Sign in / Sign up

Export Citation Format

Share Document