A low-cost adsorbent from coal fly ash for mercury removal from industrial wastewater

2017 ◽  
Vol 5 (1) ◽  
pp. 391-399 ◽  
Author(s):  
Mahshid Attari ◽  
Syed Salman Bukhari ◽  
Hossein Kazemian ◽  
Sohrab Rohani
Author(s):  
Virendra Kumar Yadav ◽  
R Suriyaprabha ◽  
Gajendra Kumar Inwati ◽  
Nitin Gupta ◽  
Bijendra Singh ◽  
...  

2015 ◽  
Vol 136 ◽  
pp. 96-105 ◽  
Author(s):  
Jiancheng Wang ◽  
Dekui Li ◽  
Fenglong Ju ◽  
Lina Han ◽  
Liping Chang ◽  
...  

2018 ◽  
Vol 154 ◽  
pp. 01037 ◽  
Author(s):  
Agus Taufiq ◽  
Pratikno Hidayat ◽  
Arif Hidayat

The removal of reactive dyes on modified coal fly ash has been investigated during a series of batch adsorption experiments. Physical characteristics of modified coal fly ash was characterized by Brunauer Emmett Teller (BET) surface area analysis, X-ray powder diffraction (XRD), Fourier transform infrared spectrophotometer (FT-IR), and scanning electron microscope (SEM). The effects of operational parameters such as initial dye concentration (50–200 mg/L), solution pH (4–10) and adsorbent dosage (50–200 mg/L) were studied. The adsorption experiments indicated that modified coal fly ash was effective in removing of Remazol Blue. The percentage removal of dyes increased while the modified fly ash dosage increased. The percentage removal of dyes increased with decreased initial concentration of the dye and also increased with amount of adsorbent used. The optimum of removal of dyes was found to be 94% at initial dye concentration 50 g/mL, modified fly ash dosage 250 g/mL, and pH of 2.0.


2015 ◽  
Vol 121 ◽  
pp. 961-966 ◽  
Author(s):  
Xiaotong Jin ◽  
Na Ji ◽  
Chunfeng Song ◽  
Degang Ma ◽  
Guoping Yan ◽  
...  
Keyword(s):  
Fly Ash ◽  
Low Cost ◽  

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8279
Author(s):  
Silviya Boycheva ◽  
Ivan Marinov ◽  
Denitza Zgureva-Filipova

At present, mitigating carbon emissions from energy production and industrial processes is more relevant than ever to limit climate change. The widespread implementation of carbon capture technologies requires the development of cost-effective and selective adsorbents with high CO2 capture capacity and low thermal recovery. Coal fly ash has been extensively studied as a raw material for the synthesis of low-cost zeolite-like adsorbents for CO2 capture. Laboratory tests for CO2 adsorption onto coal fly ash zeolites (CFAZ) reveal promising results, but detailed computational studies are required to clarify the applicability of these materials as CO2 adsorbents on a pilot and industrial scale. The present study provides results for the validation of a simulation model for the design of adsorption columns for CO2 capture on CFAZ based on the experimental equilibrium and dynamic adsorption on a laboratory scale. The simulations were performed using ProSim DAC dynamic adsorption software to study mass transfer and energy balance in the thermal swing adsorption mode and in the most widely operated adsorption unit configuration.


Catalysts ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1113
Author(s):  
Marco Cocchi ◽  
Doina De Angelis ◽  
Leone Mazzeo ◽  
Piergianni Nardozi ◽  
Vincenzo Piemonte ◽  
...  

The plastic film residue (PFR) of a plastic waste recycling process was selected as pyrolysis feed. Both thermal and catalytic pyrolysis experiments were performed and coal fly ash (CFA) and X zeolites synthesized from CFA (X/CFA) were used as pyrolysis catalysts. The main goal is to study the effect of low-cost catalysts on yields and quality of pyrolysis oils. NaX/CFA, obtained using the fusion/hydrothermal method, underwent ion exchange followed by calcination in order to produce HX/CFA. Firstly, thermogravimetry and differential scanning calorimetry (TG and DSC, respectively) analyses evaluated the effect of catalysts on the PFR degradation temperature and the process energy demand. Subsequently, pyrolysis was carried out in a bench scale reactor adopting the liquid-phase contact mode. HX/CFA and NaX/CFA reduced the degradation temperature of PFR from 753 to 680 and 744 K, respectively, while the degradation energy from 2.27 to 1.47 and 2.07 MJkg−1, respectively. Pyrolysis runs showed that the highest oil yield (44 wt %) was obtained by HX/CFA, while the main products obtained by thermal pyrolysis were wax and tar. Furthermore, up to 70% of HX/CFA oil was composed by gasoline range hydrocarbons. Finally, the produced gases showed a combustion energy up to 8 times higher than the pyrolysis energy needs.


Author(s):  
J A Pinem ◽  
P S Utama ◽  
R S Irianty ◽  
B A Prawiranegara ◽  
Edy Saputra

RSC Advances ◽  
2020 ◽  
Vol 10 (26) ◽  
pp. 15514-15522
Author(s):  
Aditi Chatterjee ◽  
Shahnawaz Shamim ◽  
Amiya Kumar Jana ◽  
Jayanta Kumar Basu

A highly efficient and low-cost alumina–silica nano-sorbent was fabricated and characterized to realize the key factors responsible for its superiority over the existing adsorbents in treating the wastewater for the removal of dyes and heavy metals.


Sign in / Sign up

Export Citation Format

Share Document