Uniform zinc deposition on O,N-dual functionalized carbon cloth current collector

Author(s):  
Mengqi Zhou ◽  
Guoqiang Sun ◽  
Shuang-Quan Zang
Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3198 ◽  
Author(s):  
Minfeng Chen ◽  
Weijun Zhou ◽  
Jizhang Chen ◽  
Junling Xu

Wood has unique advantages. However, the rigid structure and intrinsic insulating nature of wood limit its applications. Herein, a two-step process is developed to render wood veneers conductive and flexible. In the first step, most of the lignin and hemicellulose in the wood veneer are removed by hydrothermal treatment. In the second step, electroless Ni plating and subsequent pressing are carried out. The obtained Ni-plated veneer is flexible and bendable, and has a high tensile strength of 21.9 and 4.4 MPa along and across the channel direction, respectively, the former of which is considerably higher than that of carbon cloth and graphene foam. Moreover, this product exhibits high electrical conductivity around 1.1 × 103 S m−1, which is comparable to that of carbon cloth and graphene foam, and significantly outperforms previously reported wood-based conductors. This work reveals an effective strategy to transform cheap and renewable wood into a high value-added product that rivals expensive carbon cloth and graphene foam. The obtained product is particularly promising as a current collector for flexible and wearable electrochemical energy storage devices such as supercapacitors and Li-ion batteries.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Boqiao Li ◽  
Wei Zhao ◽  
Chen Zhang ◽  
Zhe Yang ◽  
Fei Dang ◽  
...  

Owing to high safety, low cost, nontoxicity, and environment-friendly features, LiFePO4 that is served as the lithium ion battery cathode has attracted much attention. In this paper, a novel 3D LiFePO4@C core-shell configuration anchored on carbon cloth is synthesized by a facile impregnation sol-gel approach. Through the binder-free structure, the active materials can be directly combined with the current collector to avoid the falling of active materials and achieve the high-efficiency lithium ion and electron transfer. The traditional slurry-casting technique is applicable for pasting LiFePO4@C powders onto the 2D aluminum foil current collector (LFP-Al). By contrast, LFP-CC exhibits a reversible specific capacity of 140 mAh·g-1 and 93.3 mAh·g-1 at 1C and 10C, respectively. After 500 cycles, no obvious capacity decay can be observed at 10C while keeping the coulombic efficiency above 98%. Because of its excellent capacity, high-rate performance, stable electrochemical performance, and good flexibility, this material has great potentials of developing the next-generation high-rate performance lithium ion battery and preparing the binder-free flexible cathode.


2009 ◽  
Vol 60-61 ◽  
pp. 260-264
Author(s):  
Bo Zhang ◽  
Yu Feng Zhang ◽  
Xiao Wei Liu ◽  
Peng Zhang

Based on the visualization technology, we investigated experimentally the effect of different flow patterns on anode fluid behaviors of the μDMFC (Micro Direct Methanol Fuel Cell) with a transparent material under the same condition. Stainless steel mesh was utilized as the current collector which was distinct from the carbon cloth or carbon paper. Four dissimilar flow patterns were developed and tested. The observation of the effect of different flow patterns revealed that movements of dilute methanol solutions and CO2 gas bubbles in the dot and parallel flow fields represented more difficult, which could result in a decline of the μDMFC performance. The study also showed that a channel blocking in the single-serpentine flow field would be extremely terrible which could lead to a fuels leaking of the μDMFC, meanwhile the liquid-gas flow was more fluent and stable in a double-serpentine flow field. Therefore, due to its advantages, a double-serpentine flow pattern is more suitable for the μDMFC application compared with the other flow patterns.


Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1195
Author(s):  
Jianhao Lin ◽  
Xusheng Du

Urchin-like tungsten oxide (WO3) microspheres self-assembled with nanobelts are deposited on the surface of the hydrophilic carbon cloth (CC) current collector via hydrothermal reaction. The WO3 nanobelts in the urchin-like microspheres are in the hexagonal crystalline phase, and their widths are around 30–50 nm. The resulted hierarchical WO3 / CC electrode exhibits a capacitance of 3400 mF / cm2 in H2SO4 electrolyte in the voltage window of −0.5 ~ 0.2 V, which makes it an excellent negative electrode for asymmetric supercapacitors. To improve the capacitive performance of the positive electrode and make it comparable with that of the WO3 / CC electrode, both the electrode material and the electrolyte have been carefully designed and prepared. Therefore, the hydrophilic CC is further coated with carbon nanotubes (CNTs) to create a hierarchical CNT / CC electrode via a convenient flame synthesis method, and a redox-active electrolyte containing an Fe2+ / Fe 3+ couple is introduced into the half-cell system as well. As a result, the high performance of the asymmetric supercapacitor assembled with both the asymmetric electrodes and electrolytes has been realized. It exhibits remarkable energy density as large as 403 μW h / cm2 at 15 mW / cm2 and excellent cyclic stability after 10,000 cycles.


2020 ◽  
Vol 21 (9) ◽  
pp. 3113 ◽  
Author(s):  
Ryan Dula Corpuz ◽  
Lyn Marie De Juan-Corpuz ◽  
Mai Thanh Nguyen ◽  
Tetsu Yonezawa ◽  
Heng-Liang Wu ◽  
...  

Recently, rechargeable zinc-ion batteries (ZIBs) have gained a considerable amount of attention due to their high safety, low toxicity, abundance, and low cost. Traditionally, a composite manganese oxide (MnO2) and a conductive carbon having a polymeric binder are used as a positive electrode. In general, a binder is employed to bond all materials together and to prevent detachment and dissolution of the active materials. Herein, the synthesis of α-MnO2 nanowires on carbon cloth via a simple one-step hydrothermal process and its electrochemical performance, as a binder-free cathode in aqueous and nonaqueous-based ZIBs, is duly reported. Morphological and elemental analyses reveal a single crystal α-MnO2 having homogeneous nanowire morphology with preferential growth along {001}. It is significant that analysis of the electrochemical performance of the α-MnO2 nanowires demonstrates more stable capacity and superior cyclability in a dimethyl sulfoxide (DMSO) electrolyte ZIB than in an aqueous electrolyte system. This is because DMSO can prevent irreversible proton insertion as well as unfavorable dendritic zinc deposition. The application of the binder-free α-MnO2 nanowires cathode in DMSO can promote follow-up research on the high cyclability of ZIBs.


Energies ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 31 ◽  
Author(s):  
Lyn Marie De Juan-Corpuz ◽  
Ryan Dula Corpuz ◽  
Anongnat Somwangthanaroj ◽  
Mai Thanh Nguyen ◽  
Tetsu Yonezawa ◽  
...  

Recently, rechargeable aqueous zinc-ion batteries (AZBs) have attracted extensive interest due to their safety, abundance, low cost, and low toxicity. However, aqueous electrolytes require a polymeric binder to prevent dissolution of the active material in addition to its binding properties. This study highlights binder-free, centimeter long, single-crystal, V2O5 nanofibers (BCS-VONF) on carbon cloth, as the cathode material for AZBs synthesized via a simple one-step hydrothermal process. BCS-VONF in 3.0 M Zn(OTf)2 exhibit promising electrochemical performance with excellent capacity retention. Even in the absence of a binder, BCS-VONF were found to be very stable in 3.0 M Zn(OTf)2. They will not yield to the dissolution and detachment of the active material on the current collector. The novel strategy described in this study is an essential step for the development of BCS-VONF on carbon cloth, as a promising cathode material for AZBs.


Sign in / Sign up

Export Citation Format

Share Document