Pilot-scale two-stage constructed wetlands based on novel solid carbon for rural wastewater treatment in southern China: Enhanced nitrogen removal and mechanism

2021 ◽  
Vol 292 ◽  
pp. 112750
Author(s):  
Lixia Jia ◽  
Haimeng Sun ◽  
Qi Zhou ◽  
Liu Zhao ◽  
Weizhong Wu
2010 ◽  
Vol 62 (8) ◽  
pp. 1965-1965
Author(s):  
S. Park ◽  
J. Lee ◽  
J. Park ◽  
I. Byun ◽  
T. Park ◽  
...  

Publisher‘s note. We regret that the published version of this article erroneously denoted the first author as corresponding author; in fact the formal corresponding author of this paper is Professor Taeho Lee, whose address is repeated below.


2017 ◽  
Vol 77 (1) ◽  
pp. 70-78 ◽  
Author(s):  
Yanjun Mao ◽  
Xie Quan ◽  
Huimin Zhao ◽  
Yaobin Zhang ◽  
Shuo Chen ◽  
...  

Abstract The activated sludge (AS) process is widely applied in dyestuff wastewater treatment plants (WWTPs); however, the nitrogen removal efficiency is relatively low and the effluent does not meet the indirect discharge standards before being discharged into the industrial park's WWTP. Hence it is necessary to upgrade the WWTP with more advanced technologies. Moving bed biofilm processes with suspended carriers in an aerobic tank are promising methods due to enhanced nitrification and denitrification. Herein, a pilot-scale integrated free-floating biofilm and activated sludge (IFFAS) process was employed to investigate the feasibility of enhancing nitrogen removal efficiency at different hydraulic retention times (HRTs). The results showed that the effluent chemical oxygen demand (COD), ammonium nitrate (NH4+-N) and total nitrogen (TN) concentrations of the IFFAS process were significantly lower than those of the AS process, and could meet the indirect discharge standards. PCR-DGGE and FISH results indicated that more nitrifiers and denitrifiers co-existed in the IFFAS system, promoting simultaneous nitrification and denitrification. Based on the pilot results, the IFFAS process was used to upgrade the full-scale AS process, and the effluent COD, NH4+-N and TN of the IFFAS process were 91–291 mg/L, 10.6–28.7 mg/L and 18.9–48.6 mg/L, stably meeting the indirect discharge standards and demonstrating the advantages of IFFAS in dyestuff wastewater treatment.


2021 ◽  
Vol 13 (22) ◽  
pp. 12456
Author(s):  
Tao Wang ◽  
Liping Xiao ◽  
Hongbin Lu ◽  
Shaoyong Lu ◽  
Xiaoliang Zhao ◽  
...  

The quality of micropolluted water is unstable and its substrate concentration fluctuates greatly. The goal is to predict the concentration effect on the treatment of nitrogen in a river with an actual low C/N ratio for the proposed full-scale Xiaoyi River estuary wetland, so that the wetland project can operate stably and perform the water purification function effectively in the long term. Two pilot-scale multistage constructed wetland–pond (MCWP) systems (S1 and S2, respectively) based on actual engineering with the same “front ecological oxidation ponds, two-stage horizontal subsurface flow constructed wetlands and surface flow constructed wetlands (SFCWs) as the core and postsubmerged plant ponds” as the planned process were constructed to investigate the effect of different influent permanganate indexes (CODMn) and total nitrogen (TN) contents on nitrogen removal from micropolluted river water with a fixed C/N ratio from summer to winter in the field. The results indicate that the TN removal rate in the S1 and S2 systems was significant (19.56% and 34.84%, respectively). During the process of treating this micropolluted water with a fixed C/N ratio, the influent of S2 with a higher CODMn concentration was conducive to the removal of TN. The TN removal rate in S2 was significantly affected by the daily highest temperature. There was significant nitrogen removal efficiency in the SFCWs. The C/N ratio was a major determinant influencing the nitrogen removal rate in the SFCWs. The organic matter release phenomenon in SFCWs with high-density planting played an essential role in alleviating the lack of carbon sources in the influent. This research strongly supports the rule that there is seasonal nitrogen removal in the MCWPs under different influent substrate concentrations, which is of guiding significance for practical engineering.


1990 ◽  
Vol 22 (7-8) ◽  
pp. 171-179 ◽  
Author(s):  
G. Bahre ◽  
W. Firk ◽  
M. Gassen

The report describes low-cost development and design of a two-stage wastewater treatment plant for 90,000 PE to achieve the highest possible degree of phosphorus and nitrogen elimination. The receiving water body of the treatment plant is a small watercourse fed almost exclusively by treated wastewater. A significant improvement in the water quality of this watercourse is planned. In particular, the performance of the wastewater treatment plant will need to be enhanced. The plant operator, the Erft River Board, organized a competition to attract solutions for an appropriate development of the plant from several consultants. Apart from embodying the concept of extensive wastewater treatment, designs were expected to preserve the existing infrastructure of the two-stage treatment plant as far as possible. Following selection of the most suitable design, the intended process technology is currently being tested in a pilot-scale plant. Planning envisages advanced wastewater treatment processes, including enhanced biological phosphorus removal, chemical precipitation/flocculation, nitrification and denitrification and combined coagulation/filtration. The pilot-scale investigations are carried out in close co-operation between the water authorities, the plant operators, the consultant, and a university institute of sanitary engineering. The paper presents the design and first results of the pilot-scale investigations in terms of the parameters BOD5, COD, phosphorus, ammonia and nitrate.


1991 ◽  
Vol 23 (10-12) ◽  
pp. 1853-1862 ◽  
Author(s):  
T. Nambu ◽  
K. Kawarura ◽  
M. Kaneko

Wastewater treatment by using a series of bioreactors with submerged net plates, on which microbial growths could be developed, was studied to evaluate its treatment performance and to find suitable operational conditions for sufficient BOD and nitrogen removal. A comprehensive experimental study was carried out by using a bench-scale plant which treated artificial wastewater and a pilot-scale plant which treated municipal wastewater. This process treated well the wastewater with higher pollutant loads in comparison with the conventional activated sludge process. The wastewater containing 200 mg BOD/l was reduced to 20 mg BOD/l at the high BOD loading of 1,94 kg/m3 day and the retention time less than 5 hours. Nitrogen removal could be explained well by an index defined as the product of the water temperature and the retention time. When the ratio, in flow rate, of recycled water to influent was 4 and the index was more than 400, nitrogen removal more than 80 % was obtained.


1993 ◽  
Vol 28 (10) ◽  
pp. 335-341 ◽  
Author(s):  
S. Koottatep ◽  
C. Leesanga ◽  
H. Araki

Intermittent aeration has been proved to be an efficient method in nitrogen removal in many biological treatment processes. Aerated lagoon has been used as domestic wastewater treatment for a small housing estates in Thailand for quite sometime. The purpose of this study is to determine whether intermittent aeration of aerated lagoon could provide efficient nitrogen removal in domestic wastewater. The experiment was carried out using pilot scale aerated lagoon at Chiangmai University. The result showed that 45% of total nitrogen removal could be achieved by aeration and non-aeration of 12 hours each cycle. The intermittent aeration did not affect organic substances removal of the process. Sludge recycle during non-aeration period may improve total nitrogen removal. The method could be introduced to save energy of small wastewater treatment plant.


Sign in / Sign up

Export Citation Format

Share Document