Nitrate sources and transformations in surface water of a mining area due to intensive mining activities: Emphasis on effects on distinct subsidence waters

2021 ◽  
Vol 298 ◽  
pp. 113451
Author(s):  
Jie Hu ◽  
Xing Chen ◽  
Yeyu Chen ◽  
Chang Li ◽  
Mengxi Ren ◽  
...  
2019 ◽  
Vol 70 (10) ◽  
pp. 3678-3680
Author(s):  
Alina Cochiorca ◽  
Narcis Barsan ◽  
Florin Marian Nedeff ◽  
Ion Sandu ◽  
Emilian Florin Mosnegutu ◽  
...  

This paper presents a study on assessment of water quality. According to a study, mining activities have a significant impact on water quality (lakes, surface water and groundwater), which has become a major problem globally. Due to mining and exploitation processes, lakes can be formed around these mines. Also, these lakes have been formed around the world and are steadily increasing. The purpose of this study is to watch the quality of water from the area around mining activities. This study refers to the, Groapa Burlacu lake around the mining exploitation Targu Ocna, Romania. This lake was formed on the northern bottle of the massive salt, strongly affected by the underground activities. Sampling for the determination the concentrations of Cl- and NaCl from the studied area was made at different depths (0 m, -5 m, -10 m, -15 m, -20 m, -25 m, -30 m, -35 m -40 m). Besides these concentrations, physical parameters of the water (pH, turbidity, electrical conductivity, dissolved oxygen and temperature) were also measured. To determine the physical parameters in the monitored area, sampling was done from four different points of the area and then put together for analysis. These parameters were measured on site using portable equipment. The data on the analyzed concentrations indicate that at depths of less than 5.0 m, the NaCl concentration values are more than 250 g/L.


2019 ◽  
Vol 70 (10) ◽  
pp. 3678-3680

This paper presents a study on assessment of water quality. According to a study, mining activities have a significant impact on water quality (lakes, surface water and groundwater), which has become a major problem globally. Due to mining and exploitation processes, lakes can be formed around these mines. Also, these lakes have been formed around the world and are steadily increasing. The purpose of this study is to watch the quality of water from the area around mining activities. This study refers to the, Groapa Burlacu lake around the mining exploitation Targu Ocna, Romania. This lake was formed on the northern bottle of the massive salt, strongly affected by the underground activities. Sampling for the determination the concentrations of Cl- and NaCl from the studied area was made at different depths (0 m, -5 m, -10 m, -15 m, -20 m, -25 m, -30 m, -35 m -40 m). Besides these concentrations, physical parameters of the water (pH, turbidity, electrical conductivity, dissolved oxygen and temperature) were also measured. To determine the physical parameters in the monitored area, sampling was done from four different points of the area and then put together for analysis. These parameters were measured on site using portable equipment. The data on the analyzed concentrations indicate that at depths of less than 5.0 m, the NaCl concentration values are more than 250 g/L. Keywords: mining activities, water quality, Cl-, NaCl, physical parameters


Author(s):  

Analysis of reasons for formation of the historical environmental damage is made. The damage has been accumulated due to mining activities. Its impact on the status of surface water and groundwater has been estimated after termination of the mineral deposits’ mining. It is shown that mining leads to a series of hydro/geological problems that are specific to a mining area. Poor state of the hydrosphere after the end of production is determined by the fact that an effective mechanism for elimination of past environmental damage has not been developed.


2018 ◽  
Vol 1 (3) ◽  
pp. 156-165 ◽  
Author(s):  
Nasirudeen Abdul Fatawu

Recent floods in Ghana are largely blamed on mining activities. Not only are lives lost through these floods, farms andproperties are destroyed as a result. Water resources are diverted, polluted and impounded upon by both large-scale minersand small-scale miners. Although these activities are largely blamed on behavioural attitudes that need to be changed, thereare legal dimensions that should be addressed as well. Coincidentally, a great proportion of the water resources of Ghana arewithin these mining areas thus the continual pollution of these surface water sources is a serious threat to the environmentand the development of the country as a whole. The environmental laws need to be oriented properly with adequate sanctionsto tackle the impacts mining has on water resources. The Environmental Impact Assessment (EIA) procedure needs to bestreamlined and undertaken by the Environmental Protection Agency (EPA) and not the company itself.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuhuan Cui ◽  
Jie Wang ◽  
Shuang Hao

AbstractNitrate (NO3−) pollution is a serious global problem, and the quantitative analysis of its sources contributions is essential for devising effective water-related environmental-protection policies. The Shengjin Lake basin, located in the middle to lower reaches of the Yangtze River in China was selected as the research area in our study. We first grouped 29 surface water samples and 33 groundwater samples using cluster analysis, and then analyzed potential nitrate sources for each dataset of δ15N–NO3− and δ18O–NO3− isotope values by applying a Bayesian isotope-mixing model. Our results show that the nitrogen pollution in the surface-ground water in the study area seriously exceeded to class V of the Environmental Quality Standard of Surface Water of China. The NO3− in surface water from the mid-upper reaches of the drainage basin mainly originates from soil nitrogen (SN) and chemical fertilizer (CF), with contribution rates of 48% and 32%, respectively, and the NO3− in downstream areas mainly originates from CF and manure and sewage (MS), with contribution rates of 48% and 33%, respectively. For the groundwater samples, NO3− mainly originates from MS, CF, and SN in the mid-upper reaches of the drainage basin and the northside of Dadukou near the Yangtze River, with contribution rates of 34%, 31%, and 29%, respectively, whereas NO3− in the lower reaches and the middle part of Dadukou mainly originates from MS, with a contribution rate of 83%. The nitrogen conversion of surface water in lakes and in the mid-upper reaches is mainly affected by water mixing, while the groundwater and surface water in the lower plains are mainly affected by denitrification. The method proposed in this study can expand the ideas for tracking nitrate pollution in areas with complex terrain, and the relevant conclusions can provide a theoretical basis for surface and groundwater pollution control in the hilly basin of Yangtze River.


Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3143
Author(s):  
Danica Fazekašová ◽  
Juraj Fazekaš ◽  
Lenka Štofejová

The focus of this work is on the evaluation of selected water quality indicators as per the applicable regulations, taking into account European and national legislation and the evaluation of the risk of contamination of surface waters with toxic elements using the contamination factor (Cfi) and the degree of pollution (Cd). The studied area of Slovinky is an important ore region, with rich deposits of copper and silver ores that have been mined for centuries. One of the most important remnants of mining activities in this area is the Slovinky tailing impoundment. The sludge pond area has an area of 15 ha, and the height of the dam is 113 metres above sea level, which makes the sludge pond one of the tallest water structures in Slovakia. The Slovinský creek was monitored in the years 2010, 2011, and 2019 at five sampling points, which were selected to map the entire length of the water flow from the source to the estuary to the river Hornád. Risk elements (As, Cu, Cd, and Fe) and physicochemical parameters (such as temperature, dissolved oxygen concentration, conductivity, resistivity, salinity, total dissolved solids, NaCl, redox potential, and pH) were included in this study and evaluated according to applicable regulations, taking into account European legislation (Act No. 269/2010 Coll., guideline value WHO 2011). The results of the experimental studies showed that the highest values of As and Cu were measured at the site where drainage waters from the Slovinky tailing impoundment and mining water of the Alžbeta shaft flow into the creek. The concentration of As exceeded the limit value by up to 31 times and the concentration of Cu 16.8–134.5 times. At the same time, the highest values of conductivity, salinity, total dissolved solids, and NaCl were found, and there was no acidification of water at the site that had the highest pollution. Water contamination was assessed based on Cfi and Cd; our findings showed that the surface water from the site of contamination, along the entire length of the stream, was very highly contaminated with risk elements in the order of As > Fe > Cu, and the level of contamination decreased with distance from the site of contamination. Our research shows that seepage of toxic substances from sludge ponds and abandoned mines has caused the requirements for the quality of surface water of the Slovinský creek not to be met. In connection with mining activities, surface streams act as a transport medium through which other components of the environment can be polluted.


2011 ◽  
Vol 10 ◽  
pp. 914-917 ◽  
Author(s):  
Liang Ning ◽  
Yang Liyuan ◽  
Dai Jirui ◽  
Pang Xugui

Sign in / Sign up

Export Citation Format

Share Document