Network pharmacology-based study on immunomodulatory mechanism of danggui-yimucao herb pair for the treatment of RU486-induced abortion

2022 ◽  
Vol 282 ◽  
pp. 114609
Author(s):  
Shi-Jie Bi ◽  
Yu-Xi Huang ◽  
Li-Mei Feng ◽  
Shi-Jun Yue ◽  
Yan-Yan Chen ◽  
...  
2011 ◽  
Vol 73 (6) ◽  
pp. 563-567
Author(s):  
Yoko YOKOYAMA ◽  
Emiko TAKEISHI ◽  
Satoshi NAMIE ◽  
Shunpei FUKUDA ◽  
Masataka ARAKAWA ◽  
...  

Author(s):  
Xiao Zhou ◽  
Xiao-Fei Zhang ◽  
Dong-Yan Guo ◽  
Yan-Jun Yang ◽  
Lin Liu ◽  
...  

Objective: Lingzhu San (LZS) is a traditional Chinese medicine (TCM) prescription which can be effective in treating febrile seizures (FS) and has few researches on the mechanisms. In order to better guide the clinical use of LZS, we used the research ideas and methods of network pharmacology to find the potential core compounds, targets and pathways of LZS in the complex TCM system for the treatment of FS, and predict the mechanism. Materials and Methods: Databases such as BATMAN, TCMSP, TCMID, and SWISS TARGET are used to mine the active compounds and targets of LZS, and the target information of FS was obtained through GENECARDS and OMIM. Using Venny2.1.0 and Cytoscape software to locked the potential core compounds and targets of FS. The R language and ClusterProfiler software package were adopt to enrich and analyze the KEGG and GO pathways of the core targets and the biological processes and potential mechanisms of the core targets were revealed. Results: 187 active compounds and 2113 target proteins of LZS were collected. And 38 potential core compounds, 35 core targets and 775 metabolic and functional pathways were screened which involved in mediating FS. Finally, the role of the core compounds, targets and pivotal pathways of LZS regulated FS in the pathogenesis and therapeutic mechanism of FS was discussed and clarified. Conclusions: In this paper, the multi-compounds, multi-targets and multi-pathways mechanism of LZS in the treatment of FS was preliminarily revealed through the analysis of network pharmacology data, which is consistent with the principle of multi-compounds compatibility of TCM prescriptions and unified treatment of diseases from multiple angles, and it provides a new way for TCM to treat complex diseases caused by multiple factors.


2015 ◽  
Vol 18 (9) ◽  
pp. 846-854 ◽  
Author(s):  
Uma Chandran ◽  
Neelay Mehendale ◽  
Girish Tillu ◽  
Bhushan Patwardhan

2019 ◽  
Vol 22 (6) ◽  
pp. 411-420 ◽  
Author(s):  
Xian-Jun Wu ◽  
Xin-Bin Zhou ◽  
Chen Chen ◽  
Wei Mao

Aim and Objective: Cardiovascular disease is a serious threat to human health because of its high mortality and morbidity rates. At present, there is no effective treatment. In Southeast Asia, traditional Chinese medicine is widely used in the treatment of cardiovascular diseases. Quercetin is a flavonoid extract of Ginkgo biloba leaves. Basic experiments and clinical studies have shown that quercetin has a significant effect on the treatment of cardiovascular diseases. However, its precise mechanism is still unclear. Therefore, it is necessary to exploit the network pharmacological potential effects of quercetin on cardiovascular disease. Materials and Methods: In the present study, a novel network pharmacology strategy based on pharmacokinetic filtering, target fishing, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, compound-target-pathway network structured was performed to explore the anti- cardiovascular disease mechanism of quercetin. Results:: The outcomes showed that quercetin possesses favorable pharmacokinetic profiles, which have interactions with 47 cardiovascular disease-related targets and 12 KEGG signaling pathways to provide potential synergistic therapeutic effects. Following the construction of Compound-Target-Pathway (C-T-P) network, and the network topological feature calculation, we obtained top 10 core genes in this network which were AKT1, IL1B, TNF, IL6, JUN, CCL2, FOS, VEGFA, CXCL8, and ICAM1. KEGG pathway enrichment analysis. These indicated that quercetin produced the therapeutic effects against cardiovascular disease by systemically and holistically regulating many signaling pathways, including Fluid shear stress and atherosclerosis, AGE-RAGE signaling pathway in diabetic complications, TNF signaling pathway, MAPK signaling pathway, IL-17 signaling pathway and PI3K-Akt signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document